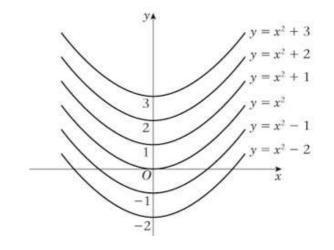
Exercise A, Question 1

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$$

Solution:



Exercise A, Question 2

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y$$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y$$

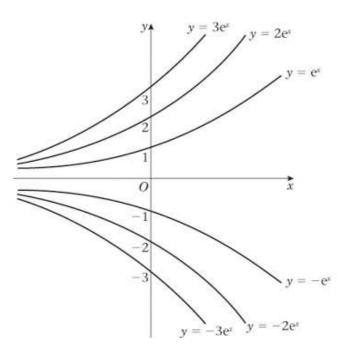
$$\therefore \int \frac{1}{y} \,\mathrm{d}y = \int 1 \,\mathrm{d}x$$

$$\therefore$$
 ln y = x + c where c is constant

$$y = e^{x+c}$$

$$= e^c \times e^x$$

 $y = Ae^x$ where A is constant ($A = e^c$)



© Pearson Education Ltd 2009

Separate the variables and integrate. Include a constant of integration on one side of the equation.

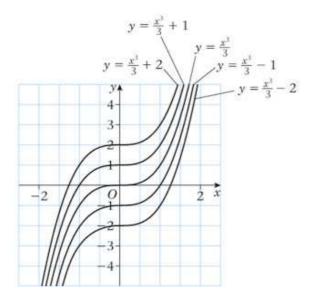
Exercise A, Question 3

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2$$

Solution:

 $\frac{dy}{dx} = x^2$ $y = \int x^2 dx$ $y = \frac{x^3}{3} + c \text{ where } c \text{ is constant}$



Exercise A, Question 4

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}, x > 0$$

Solution:

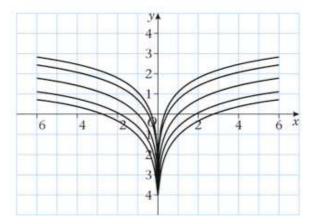
$$\frac{dy}{dx} = \frac{1}{x}$$

$$\therefore \quad y = \int \frac{1}{x} dx$$

$$= \ln x + c$$

$$= \ln x + \ln A$$

$$\therefore \quad y = \ln Ax$$



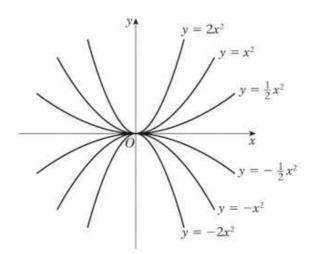
Exercise A, Question 5

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2y}{x}$$

Solution:

$$\therefore y = Ax^2$$



Exercise A, Question 6

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y}$$

Solution:

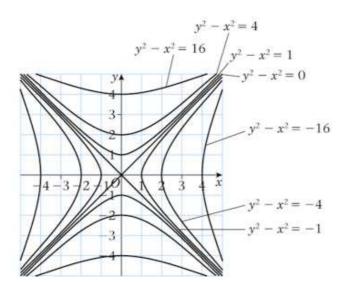
$$\frac{dy}{dx} = \frac{x}{y}$$

$$\therefore \qquad \int y \, dy = \int x \, dx$$

$$\therefore \qquad \frac{y^2}{2} = \frac{x^2}{2} + c$$

or $y^2 - x^2 = 2c$

 $y^2 - x^2 = 0$ is a pair of straight lines. These are y = x and y = -x $y^2 - x^2 = 2c$, $c \neq 0$ is a hyperbola.



Exercise A, Question 7

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{y}$$

Solution:

$$\frac{dy}{dx} = e^{y}$$

$$\therefore \int \frac{1}{e^{y}} dy = \int 1 dx \quad \text{To integrate } \frac{1}{e^{y}} \text{ express it as } e^{-y}.$$

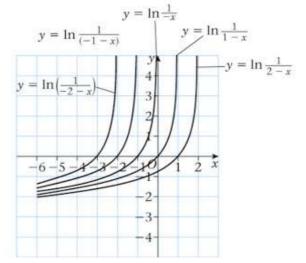
$$\therefore \int e^{-y} dy = \int 1 dx$$

$$\therefore -e^{-y} = x + c$$

$$\therefore -e^{-y} = -x - c$$

$$\therefore -y = \ln [-x - c]$$

$$y = -\ln [-x - c] \text{ or } \ln \frac{1}{(-x - c)}$$



Exercise A, Question 8

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x(x+1)'} \quad x > 0$$

Solution:

$$\frac{dy}{dx} = \frac{y}{x(x+1)}$$

$$\therefore \int \frac{1}{y} dy = \int \frac{1}{x(x+1)} dx$$
Separate the variables, then use partial fractions to integrate the function of x.

$$\therefore \ln y = \int \left(\frac{1}{x} - \frac{1}{(x+1)}\right) dx$$

$$= \ln x - \ln(x+1) + c$$

$$\therefore \ln y = \ln \frac{x}{x+1} + \ln A$$

$$= \ln \frac{Ax}{x+1}$$

$$y = \frac{Ax}{x+1} x > 0$$

$$y = \frac{4x}{x+1}$$

$$y = \frac{4x}{x+1} = \frac{1}{x}$$

0

© Pearson Education Ltd 2009

Page 1 of 1

 $-y = \frac{x}{x+1}$

x

Exercise A, Question 9

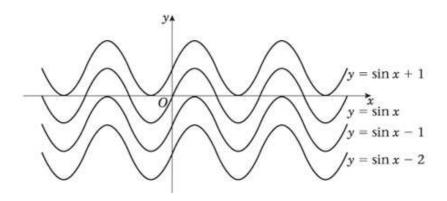
Question:

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x$$

 $\therefore y = \sin x + c$



Exercise A, Question 10

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y \cot x, \quad 0 < x < \pi$$

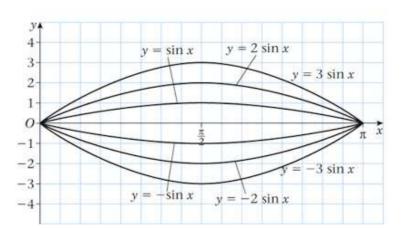
Solution:

$$\frac{dy}{dx} = y \cot x \qquad 0 < x < \pi$$

$$\therefore \int \frac{1}{y} dy = \int \frac{\cos x}{\sin x} dx$$

$$\therefore \ln|y| = \ln|\sin x| + \ln|A| \cdot \text{Express the constant of integration as } \ln|A| \text{ and combine logs to simplify your solution}$$

$$\therefore \quad y = A \sin x$$



Exercise A, Question 11

Question:

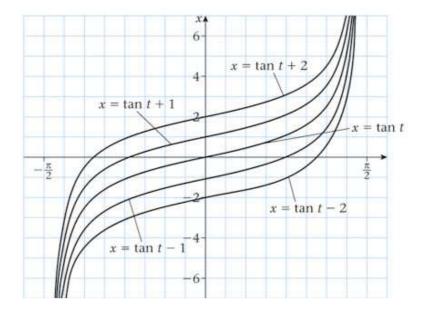
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 t, \ -\frac{\pi}{2} < t < \frac{\pi}{2}$$

Solution:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \sec^2 t \qquad -\frac{\pi}{2} < t < \frac{\pi}{2}$$

$$\therefore \quad x = \int \sec^2 t \, \mathrm{d}t$$

i.e. $x = \tan t + c$ for $-\frac{\pi}{2} < t < \frac{\pi}{2}$



Exercise A, Question 12

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x(1-x), \quad 0 < x < 1$$

Solution:

$$\frac{dy}{dx} = x(1 - x)$$

$$\therefore \int \int \frac{1}{x(1 - x)} dx = \int 1 dt$$

$$\therefore \int \left(\frac{1}{x} + \frac{1}{1 - x}\right) dx = \int 1 dt$$

$$\therefore \ln x - \ln(1 - x) = t + c$$

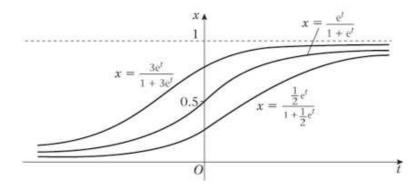
$$\therefore \ln \frac{x}{1 - x} = t + c$$

$$\therefore \frac{x}{1 - x} = e^{t + c} = Ae^{t} \cdot \frac{0 < x < 1 \text{ implies that } A \text{ is }}{a \text{ positive constant.}}$$

$$\therefore x = Ae^{t} - xAe^{t}$$

$$\therefore x(1 + Ae^{t}) = Ae^{t}$$

$$x = \frac{Ae^{t}}{1 + Ae^{t}}$$



Exercise A, Question 13

Question:

Given that *a* is an arbitrary constant, show that $y^2 = 4ax$ is the general solution of the differential equation $\frac{dy}{dx} = \frac{y}{2x}$.

- **a** Sketch the members of the family of solution curves for which $a = \frac{1}{4}$, 1 and 4.
- **b** Find also the particular solution, which passes through the point (1, 3), and add this curve to your diagram of solution curves.

Solution:

$$\frac{dy}{dx} = \frac{y}{2x}$$

$$\therefore \int \frac{1}{y} \, dy = \frac{1}{2} \int \frac{1}{x} \, dx$$

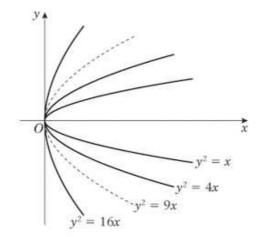
$$\therefore \quad \ln y = \frac{1}{2} \ln x + c$$

or
$$\ln y = \frac{1}{2} \ln x + \ln A$$

$$\therefore \quad \ln y = \ln A \sqrt{x}$$

i.e. $y = A \sqrt{x}$ or $y^2 = A^2 x$ or $y^2 = 4ax$

a Sketch $y^2 = x$, $y^2 = 4x$ and $y^2 = 16x$



b $y^2 = 4ax$ passes through (1, 3)

$$\therefore$$
 9 = 4a

i.e.
$$a = \frac{9}{4}$$
 and $y^2 = 9x$

Exercise A, Question 14

Question:

Given that *k* is an arbitrary positive constant, show that $y^2 + kx^2 = 9k$ is the general solution of the differential equation $\frac{dy}{dx} = \frac{-xy}{9-x^2}$ $|x| \le 3$.

a Find the particular solution, which passes through the point (2, 5).

b Sketch the family of solution curves for $k = \frac{1}{9}, \frac{4}{9}, 1$ and include your particular solution in the diagram.

Solution:

$$\frac{dy}{dx} = \frac{-xy}{9-x^2}$$

$$\therefore \int \frac{1}{y} dy = -\int \frac{x}{9-x^2} dx$$

$$\therefore \ln y = \frac{1}{2} \ln (9-x^2) + \ln A$$

$$\therefore 2 \ln y = \ln A^2 (9-x^2)$$

$$\therefore \ln y^2 = \ln A^2 (9-x^2)$$

$$\therefore y^2 = 9A^2 - A^2 x^2$$
The solution curves are all ellipses, except when $k = 1$ when the curve is a circle.
Then $y^2 + kx^2 = 9k$

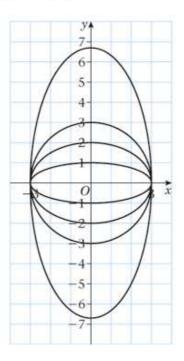
a If this curve passes through (2, 5) then

$$25 + 4k = 9k$$

$$\therefore \qquad 25 = 5k \rightarrow k = 5$$

i.e. $y^2 + 5x^2 = 45$

b When y = 0 $x = \pm 3$, when x = 0 $y = \pm \sqrt{9k}$



Exercise B, Question 1

Question:

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + y = \cos x$$

Solution:

$$x \frac{dy}{dx} + y = \cos x$$

So $\frac{d}{dx} (xy) = \cos x$
 \therefore $xy = \int \cos x \, dx$
 $= \sin x + c \leftarrow$
 \therefore $y = \frac{1}{x} \sin x + \frac{c}{x}$

© Pearson Education Ltd 2009

Remember to add the constant of integration when you integrate – not at the end of the process.

Exercise B, Question 2

Question:

$$e^{-x}\frac{\mathrm{d}y}{\mathrm{d}x} - e^{-x}y = xe^x$$

Solution:

Exercise B, Question 3

Question:

$$\sin x \, \frac{\mathrm{d}y}{\mathrm{d}x} + y \cos x = 3$$

Solution:

$$\sin x \frac{dy}{dx} + y \cos x = 3$$

$$\therefore \quad \frac{d}{dx} (y \sin x) = 3$$

$$\therefore \quad y \sin x = \int 3 \, dx$$

$$\therefore \quad y \sin x = 3x + c$$

$$\therefore \quad y = \frac{3x}{\sin x} + \frac{c}{\sin x}$$

 $= 3x \operatorname{cosec} x + c \operatorname{cosec} x$

Exercise B, Question 4

Question:

$$\frac{1}{x}\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{1}{x^2}y = \mathrm{e}^x$$

Solution:

$$\frac{1}{x}\frac{dy}{dx} - \frac{1}{x^2}y = e^x$$

$$\therefore \quad \frac{d}{dx}\left(\frac{1}{x}y\right) = e^x$$

$$\therefore \quad \frac{1}{x}y = \int e^x dx$$

$$= e^x + c$$

 $\therefore \qquad y = xe^x + cx$

Exercise B, Question 5

Question:

$$x^2 \mathrm{e}^y \, \frac{\mathrm{d}y}{\mathrm{d}x} + 2x \mathrm{e}^y = x$$

Solution:

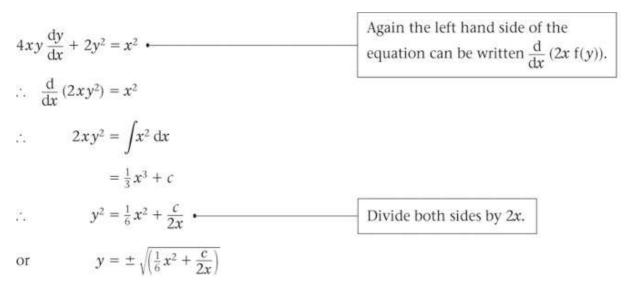
$$x^{2}e^{y} \frac{dy}{dx} + 2xe^{y} = x \quad \text{This time the left hand side is} \\ \frac{d}{dx} (x^{2} f(y)) \text{ not just } \frac{d}{dx} (x^{2} y). \\ \therefore \quad \frac{d}{dx} (x^{2}e^{y}) = x \\ \therefore \quad x^{2}e^{y} = \int x \, dx \\ \quad = \frac{x^{2}}{2} + c \\ \therefore \quad e^{y} = \frac{1}{2} + \frac{c}{x^{2}} \\ \text{or} \qquad y = \ln\left[\frac{1}{2} + \frac{c}{x^{2}}\right]$$

Exercise B, Question 6

Question:

$$4xy\,\frac{\mathrm{d}y}{\mathrm{d}x} + 2y^2 = x^2$$

Solution:



Exercise B, Question 7

Question:

a Find the general solution of the differential equation

$$x^2\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy = 2x + 1.$$

b Find the three particular solutions which pass through the points with coordinates $(-\frac{1}{2}, 0), (-\frac{1}{2}, 3)$ and $(-\frac{1}{2}, 19)$ respectively and sketch their solution curves for x < 0.

Solution:

Exercise B, Question 8

Question:

a Find the general solution of the differential equation

$$\ln x \frac{dy}{dx} + \frac{y}{x} = \frac{1}{(x+1)(x+2)}, \quad x > 1.$$

b Find the specific solution which passes through the point (2, 2).

Solution:

a
$$\ln x \frac{dy}{dx} + \frac{y}{x} = \frac{1}{(x+1)(x+2)}$$

$$\therefore \frac{d}{dx} (\ln x \times y) = \frac{1}{(x+1)(x+2)}$$

$$\therefore \qquad y \ln x = \int \frac{1}{(x+1)(x+2)} dx \quad \text{You will need to use partial fractions to do the integration.}$$

$$= \int \left(\frac{1}{x+1} - \frac{1}{x+2}\right) dx$$

$$= \ln (x+1) - \ln (x+2) + c$$

$$\therefore \qquad y = \frac{\ln (x+1) - \ln (x+2) + \ln A}{\ln x}$$

$$\frac{\ln A(x+1)}{\ln x}$$

$$\therefore$$
 $y = \frac{(x+2)}{\ln x}$ is the general solution

b When
$$x = 2, y = 2$$

$$\therefore \qquad 2 = \frac{\ln \frac{3}{4}A}{\ln 2}$$

:.
$$\ln \frac{3}{4}A = 2 \ln 2 = \ln 4$$

$$\therefore A = \frac{16}{3}$$

So
$$y = \frac{\ln \frac{16(x+1)}{3(x+2)}}{\ln x}$$

Exercise C, Question 1

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = \mathrm{e}^x$$

Solution:

$$\frac{dy}{dx} + 2y = e^{x}$$
The integrating factor is $e^{j2dx} = e^{2x}$

$$\therefore e^{2x} \frac{dy}{dx} + 2e^{2x} y = e^{3x}$$

$$\therefore \frac{d}{dx} (e^{2x} y) = e^{3x}$$

$$\therefore e^{2x} y = \int e^{3x} dx$$

$$= \frac{1}{3} e^{3x} + c$$

© Pearson Education Ltd 2009

1

 $y = \frac{1}{3} e^x + c e^{-2x}$

Page 1 of 1

Exercise C, Question 2

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + y \cot x = 1$$

Solution:

 $\frac{\mathrm{d}y}{\mathrm{d}x} + y \cot x = 1$

The integrating factor is $e^{/pdx} = e^{/\cot x \, dx}$

 $= e^{\ln \sin x}$ $= \sin x \cdot ---$

The integrating factor $e^{\ln f(x)}$ can be simplified to f(x).

Multiply differential equation by $\sin x$.

$$\therefore \sin x \frac{dy}{dx} + y \cos x = \sin x$$

$$\therefore \qquad \frac{d}{dx} (y \sin x) = \sin x$$

$$\therefore \qquad y \sin x = \int \sin x \, dx$$

$$= -\cos x + c$$

1

$$y = -\cot x + c \operatorname{cosec} x$$

Exercise C, Question 3

Question:

 $\frac{\mathrm{d}y}{\mathrm{d}x} + y\sin x = \mathrm{e}^{\cos x}$

Solution:

 $\frac{\mathrm{d}y}{\mathrm{d}x} + y\sin x = \mathrm{e}^{\cos x}$

The integrating factor is $e^{-\sin x \, dx} = e^{-\cos x}$

$$\therefore e^{-\cos x} \frac{dy}{dx} + y \sin x e^{-\cos x} = 1$$

$$\therefore \qquad \frac{d}{dx} (y e^{-\cos x}) = 1$$

$$\therefore \qquad y e^{-\cos x} = x + c$$

$$\therefore \qquad y = x e^{\cos x} + c e^{\cos x}$$

 $y = e^{2x} + ce^x$

Exercise C, Question 4

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} - y = \mathrm{e}^{2x}$$

Solution:

$$\frac{dy}{dx} - y = e^{2x}$$
The integrating factor is $e^{j-1} dx = e^{-x}$

$$\therefore e^{-x} \frac{dy}{dx} - ye^{-x} = e^{2x} \times e^{-x}$$

$$\therefore \qquad \frac{d}{dx} (ye^{-x}) = e^{x}$$

$$\therefore \qquad ye^{-x} = \int e^{x} dx$$

$$= e^{x} + c$$

÷.,

Exercise C, Question 5

Question:

 $\frac{\mathrm{d}y}{\mathrm{d}x} + y \tan x = x \cos x$

Solution:

 $\frac{dy}{dx} + y \tan x = x \cos x$ The integrating factor is $e^{/\tan x \, dx} = e^{\ln \sec x}$ Find the integrating factor and simplify $e^{\ln f(x)}$ to give f(x). $= \sec x$ $\therefore \quad \sec x \frac{dy}{dx} + y \sec x \tan x = x$ $\therefore \quad \frac{d}{dx} (y \sec x) = x$ $\therefore \quad y \sec x = \int x \, dx$ $= \frac{1}{2}x^2 + c$ $\therefore \quad y = (\frac{1}{2}x^2 + c) \cos x$

Exercise C, Question 6

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = \frac{1}{x^2}$$

Solution:

 $\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = \frac{1}{x^2}$

The integrating factor is $e^{j_x^{\perp} dx} = e^{\ln x} = x$

$$\therefore x \frac{dy}{dx} + y = \frac{1}{x}$$

$$\therefore \quad \frac{d}{dx} (xy) = \frac{1}{x}$$

$$\therefore \quad xy = \int \frac{1}{x} dx$$

$$= \ln x + c$$

$$\therefore \qquad y = \frac{1}{x}\ln x + \frac{c}{x}$$

Exercise C, Question 7

Question:

$$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} - xy = \frac{x^3}{x+2} \quad x > -2$$

Solution:

 $x^2 \frac{\mathrm{d}y}{\mathrm{d}x} - xy = \frac{x^3}{x+2}$

Divide by $x^2 \leftarrow$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} - \frac{1}{x}y = \frac{x}{x+2}$$

The integrating factor is $e^{\int -\frac{1}{x} dx} = e^{-\ln x} = e^{\ln \frac{1}{x}} = \frac{1}{x}$

Multiply the new equation by $\frac{1}{x}$

 $\therefore \frac{1}{x} \frac{dy}{dx} - \frac{1}{x^2} y = \frac{1}{x+2}$ $\therefore \quad \frac{d}{dx} \left(\frac{1}{x} y\right) = \frac{1}{x+2}$ $\therefore \quad \frac{1}{x} y = \int \frac{1}{x+2} dx$ $= \ln(x+2) + c$ $\therefore \quad y = x \ln(x+2) + cx$

© Pearson Education Ltd 2009

First divide the equation through by x^2 , to give the correct form of equation.

Exercise C, Question 8

Question:

$$3x\,\frac{\mathrm{d}y}{\mathrm{d}x} + y = x$$

Solution:

$$3x \frac{dy}{dx} + y = x$$
$$\therefore \frac{dy}{dx} + \frac{1}{3x}y = \frac{1}{3} \quad \bigstar$$

The integrating factor is $e^{j\frac{1}{3x} dx} = e^{\frac{1}{3} \ln x}$

 $= e^{\ln x^{\frac{1}{2}}} = x^{\frac{1}{2}}$

Multiply equation ***** by
$$x^{\frac{1}{3}}$$

 $\therefore x^{\frac{1}{3}} \frac{dy}{dx} + \frac{1}{3} x^{-\frac{2}{3}} y = \frac{1}{3} x^{\frac{1}{3}}$
 $\therefore \qquad \frac{d}{dx} (x^{\frac{1}{3}} y) = \frac{1}{3} x^{\frac{1}{3}}$
 $\therefore \qquad x^{\frac{1}{3}} y = \int \frac{1}{3} x^{\frac{2}{3}} dx$
 $= \frac{1}{4} x^{\frac{4}{3}} + c$
 $\therefore \qquad y = \frac{1}{4} x + c x^{-\frac{1}{3}}$

© Pearson Education Ltd 2009

First divide equation through by 3x, to get an equation of the correct form.

Exercise C, Question 9

Question:

$$(x + 2) \frac{dy}{dx} - y = (x + 2)$$

Solution:

$$(x+2)\frac{\mathrm{d}y}{\mathrm{d}x} - y = (x+2)$$
$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} - \frac{1}{(x+2)}y = 1 \quad \bigstar \leftarrow$$

Divide equation by (x + 2) before finding integrating factor.

The integrating factor is $e^{\int_{(x+2)}^{-1} dx} = e^{-\ln(x+2)} = e^{\ln \frac{1}{x+2}}$

$$=\frac{1}{x+2}$$

Multiply differential equation * by integrating factor.

$$\therefore \frac{1}{(x+2)} \frac{dy}{dx} - \frac{1}{(x+2)^2} y = \frac{1}{(x+2)}$$

$$\therefore \qquad \frac{d}{dx} \left[\frac{1}{(x+2)} y \right] = \frac{1}{x+2}$$

•

$$\frac{1}{(x+2)}y = \int \frac{1}{x+2} \, \mathrm{d}x$$
$$= \ln(x+2) + c$$

÷.,

 $y = (x + 2) \ln (x + 2) + c (x + 2)$

Exercise C, Question 10

Question:

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + 4y = \frac{\mathrm{e}^x}{x^2}$$

Solution:

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + 4y = \frac{\mathrm{e}^x}{x^2}$$

Divide throughout by x

Then
$$\frac{dy}{dx} + \frac{4}{x}y = \frac{e^x}{x^3}$$
 *

The integrating factor is $e^{\int_x^4 dx} = e^{4 \ln x} = e^{\ln x^4} = x^4$

$\therefore x^4 \frac{\mathrm{d}y}{\mathrm{d}x} + 4 x^3 y = x \mathrm{e}^x$	[having multiplied \star by x^4] •——	Integrate <i>x</i> e ^{<i>x</i>} using integration by parts.
$\therefore \qquad \frac{\mathrm{d}}{\mathrm{d}x} \left(x^4 y \right) = x \mathrm{e}^x$		

$$x^{4} y = \int x e^{x} dx$$
$$= x e^{x} - \int e^{x} dx$$
$$= x e^{x} - e^{x} + c$$
$$\therefore \qquad y = \frac{1}{x^{3}} e^{x} - \frac{1}{x^{4}} e^{x} + \frac{c}{x^{4}}$$

Exercise C, Question 11

Question:

Find y in terms of x given that $x \frac{dy}{dx} + 2y = e^x$ and that y = 1 when x = 1.

Solution:

$$x\,\frac{\mathrm{d}y}{\mathrm{d}x}+2y=\mathrm{e}^x$$

Divide throughout by x

Then
$$\frac{dy}{dx} + \frac{2}{x}y = \frac{1}{x}e^x$$
 *

The integrating factor is $e^{\int_x^2 dx} = e^{2 \ln x} = e^{\ln x^2} = x^2$

Multiply equation * by x^2

Then
$$x^2 \frac{dy}{dx} + 2xy = xe^x$$

 $\therefore \qquad \frac{d}{dx} (x^2y) = xe^x$

$$x^2 y = \int x e^x \, \mathrm{d}x$$

$$= x e^{x} - \int e^{x} dx$$
$$= x e^{x} - e^{x} + c$$

 $y = \frac{1}{x}e^x - \frac{1}{x^2}e^x + \frac{c}{x^2}$

č.

Given also that y = 1 when x = 1

Then
$$1 = e - e + c$$

$$\therefore \qquad c = 1$$

$$\therefore \qquad y = \frac{1}{x} e^x - \frac{1}{x^2} e^x + \frac{1}{x^2}$$

© Pearson Education Ltd 2009

Solve the differential equation then use the boundary condition y = 1 when x = 1 to find the constant of integration.

Exercise C, Question 12

Question:

Solve the differential equation, giving y in terms of x, where $x^{3} \frac{dy}{dx} - x^{2}y = 1$ and y = 1 at x = 1.

Solution:

$$x^3 \frac{\mathrm{d}y}{\mathrm{d}x} - x^2 y = 1$$

Divide throughout by x^3

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{1}{x}y = \frac{1}{x^3} \quad \text{*}$$

The integrating factor is $e^{-\int_x^1 dx} = e^{-\ln x} = e^{\ln \frac{1}{x}} = \frac{1}{x}$

dx

Multiply equation
$$*$$
 by $\frac{1}{x}$

Then
$$\frac{1}{x} \frac{dy}{dx} - \frac{1}{x^2} y = \frac{1}{x^4}$$

 $\therefore \qquad \frac{d}{dx} \left(\frac{1}{x} y\right) = \frac{1}{x^4}$
 $\therefore \qquad \frac{1}{x} y = \int \frac{1}{x^4} dx$
 $= \int x^{-4} dx$
 $= -\frac{1}{3} x^{-3} + c$
 $\therefore \qquad y = -\frac{1}{2} x^{-2} + cx$

÷.,

So

$$y = -\frac{1}{3x^2} + cx$$

But
$$y = 1$$
, when $x = 1$

$$\therefore \quad 1 = -\frac{1}{3} + c$$

$$\therefore \quad c = \frac{4}{3}$$

$$\therefore \quad y = -\frac{1}{3x^2} + \frac{4x}{3}$$

Exercise C, Question 13

Question:

Find the general solution of the differential equation

$$\left(x+\frac{1}{x}\right)\frac{dy}{dx}+2y=2(x^2+1)^2,$$

giving *y* in terms of *x*.

Find the particular solution which satisfies the condition that y = 1 at x = 1.

Solution:

$$\left(x+\frac{1}{x}\right)\frac{dy}{dx} + 2y = 2 \ (x^2+1)^2$$

Divide equation by
$$\left(x + \frac{1}{x}\right)$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2}{\left(x + \frac{1}{x}\right)}y = \frac{2(x^2 + 1)^2}{\left(x + \frac{1}{x}\right)}$$

i.e.
$$\frac{dy}{dx} + \frac{2x}{x^2 + 1} \times y = 2x(x^2 + 1)$$
 *

The integrating factor is $e^{\int \frac{2x}{x^2+1} dx} = e^{\ln(x^2+1)} = (x^2+1)$

Multiply \star by $(x^2 + 1)$

Then
$$(x^2 + 1) \frac{dy}{dx} + 2xy = 2x(x^2 + 1)^2$$

:.
$$\frac{d}{dx}[(x^2+1)y] = 2x(x^2+1)^2$$

÷.,

$$y (x^{2} + 1) = \int 2x (x^{2} + 1)^{2} dx$$
$$= \frac{1}{3} (x^{2} + 1)^{3} + c$$

 $y = \frac{1}{3} (x^2 + 1)^2 + \frac{c}{(x^2 + 1)}$

. .

But
$$y = 1$$
, when $x = 1$

$$\therefore \quad 1 = \frac{1}{3} \times 4 + \frac{1}{2}c$$

$$\therefore \quad c = -\frac{2}{3}$$

$$\therefore \quad y = \frac{1}{3}(x^2 + 1)^2 - \frac{2}{3(x^2 + 1)}$$

Exercise C, Question 14

Question:

Find the general solution of the differential equation

 $\cos x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 1, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}.$

Find the particular solution which satisfies the condition that y = 2 at x = 0.

Solution:

 $\cos x \, \frac{\mathrm{d}y}{\mathrm{d}x} + y = 1$

Divide throughout by $\cos x$

$$\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} + \sec x \ y = \sec x$$

The integrating factor is $e^{\int \sec x \, dx} = e^{\ln(\sec x + \tan x)}$

$$= \sec x + \tan x$$

 $\int \sec x \, \mathrm{d}x = \ln\left(\sec x + \tan x\right)$

$$\therefore (\sec x + \tan x) \frac{dy}{dx} + (\sec^2 x + \sec x \tan x) y = \sec^2 x + \sec x \tan x$$

$$\therefore \qquad \frac{\mathrm{d}}{\mathrm{d}x} \left[(\sec x + \tan x)y \right] = \sec^2 x + \sec x \tan x$$

$$\therefore \qquad (\sec x + \tan x)y = \int \sec^2 x + \sec x \tan x \, dx$$

$$= \tan x + \sec x + c$$

$$\therefore \qquad \qquad y = 1 + \frac{c}{\sec x + \tan x}$$

Given also that y = 2, when x = 0

$$\therefore \quad 2 = 1 + \frac{c}{1+0}$$

$$\therefore \quad c = 1$$

So $y = 1 + \frac{1}{\sec x + \tan x}$ or $y = 1 + \frac{\cos x}{1 + \sin x}$

Exercise D, Question 1

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \frac{x}{y}, \quad x > 0, \, y > 0$$

Solution:

$$z = \frac{y}{x} \quad \Rightarrow \quad y = xz$$

$$\therefore \qquad \qquad \frac{dy}{dx} = z + x \frac{dz}{dx} \leftarrow$$

Substitute into the equation:

$$\frac{dy}{dx} = \frac{y}{x} + \frac{x}{y}$$

$$\therefore \qquad z + x \frac{dz}{dx} = z + \frac{1}{z}$$

$$\therefore \qquad x \frac{dz}{dx} = \frac{1}{z}$$

Separate the variables:

Then
$$\int z \, dz = \int \frac{1}{x} \, dx$$

 $\therefore \qquad \frac{z^2}{2} = \ln x + c$
 $\therefore \qquad \frac{y^2}{2x^2} = \ln x + c$, as $z = \frac{y}{x}$
 $\therefore \qquad y^2 = 2x^2 (\ln x + c)$

© Pearson Education Ltd 2009

Use the given substitution to express $\frac{dy}{dx}$ in terms of *z*, *x* and $\frac{dz}{dx}$.

Exercise D, Question 2

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \frac{x^2}{y^{2\prime}} \quad x > 0$$

Solution:

As
$$z = \frac{y}{x}, y = zx$$
 and $\frac{dy}{dx} = z + x\frac{dz}{dx}$
 $\therefore \frac{dy}{dx} = \frac{y}{x} + \frac{x^2}{y^2} \Rightarrow z + x\frac{dz}{dx} = z + \frac{1}{z^2}$
 $\therefore \qquad x\frac{dz}{dx} = \frac{1}{z^2}$

Separate the variables:

Then
$$\int z^2 dz = \int \frac{1}{x} dx$$

 $\therefore \qquad \frac{z^3}{3} = \ln x + c$

But
$$z = \frac{y}{x}$$

 $\therefore \frac{y^3}{3x^3} = \ln x + c$
 $\therefore y^3 = 3x^3 (\ln x + c)$

Exercise D, Question 3

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \frac{y^2}{x^{2\prime}} \quad x > 0$$

Solution:

Separate the variables:

$$\therefore \int \frac{1}{z^2} dz = \int \frac{1}{x} dx$$
$$\therefore \quad -\frac{1}{z} = \ln x + c$$

$$z = \frac{1}{\ln x + c}$$

But
$$z = \frac{y}{x}$$

 $\therefore \quad y = \frac{-x}{\ln x + c}$

Exercise D, Question 4

Question:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^3 + 4y^3}{3xy^2}, x > 0$$

Solution:

$$z = \frac{y}{x} \Rightarrow y = zx \text{ and } \frac{dy}{dx} = z + x \frac{dz}{dx}$$

$$\therefore \frac{dy}{dx} = \frac{x^3 + 4y^3}{3xy^2} \Rightarrow z + x \frac{dz}{dx} = \frac{x^3 + 4z^3 x^3}{3xz^2 x^2}$$

$$\therefore \qquad x \frac{dz}{dx} = \frac{1 + 4z^3}{3z^2} - z$$

$$= \frac{1 + z^3}{3z^2}$$

Separate the variables:

$$\therefore \int \frac{3 z^2}{1 + z^3} dz = \int \frac{1}{x} dx$$

$$\therefore \ln (1 + z^3) = \ln x + \ln A, \text{ where } A \text{ is constant}$$

$$\therefore \ln (1 + z^3) = \ln Ax$$

So $1 + z^3 = Ax$
And $z^3 = Ax - 1. \text{ But } z = \frac{y}{x}$

$$\therefore \qquad \frac{y^3}{x^3} = Ax - 1$$

$$\therefore$$
 $y^3 = x^3 (Ax - 1)$, where A is a positive constant

Exercise D, Question 5

Question:

Use the substitution $z = y^{-2}$ to transform the differential equation

$$\frac{dy}{dx} + \left(\frac{1}{2}\tan x\right)y = -(2 \sec x)y^3, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}$$

into a differential equation in z and x. By first solving the transformed equation, find the general solution of the original equation, giving y in terms of x.

Solution:

Given
$$z = y^{-2}$$
, $y = z^{-\frac{1}{2}}$
and $\frac{dy}{dx} = -\frac{1}{2} z^{-\frac{3}{2}} \frac{dz}{dx}$ Find $\frac{dy}{dx}$ in terms of $\frac{dz}{dx}$ and z .
 $\therefore \qquad \frac{dy}{dx} + (\frac{1}{2} \tan x) y = -(2 \sec x) y^3$
 $\Rightarrow -\frac{1}{2} z^{-\frac{3}{2}} \frac{dz}{dx} + (\frac{1}{2} \tan x) z^{-\frac{1}{2}} = -2 \sec x z^{-\frac{3}{2}}$
 $\therefore \qquad \frac{dz}{dx} - z \tan x = 4 \sec x$ *

This is a first order equation which can be solved by using an integrating factor.

The integrating factor is $e^{-/\tan x \, dx} = e^{\ln \cos x}$

$$= \cos x$$

The equation that you obtain needs an integrating factor to solve it.

Multiply the equation * by $\cos x$

Then
$$\cos x \times \frac{dz}{dx} - z \sin x = 4$$

 $\therefore \qquad \qquad \frac{d}{dx} (z \cos x) = 4$

$$\therefore \qquad z\cos x = \int 4 \, \mathrm{d}x$$

$$=4x+c$$

 $z = \frac{4x + c}{\cos x}$

As
$$y = z^{-\frac{1}{2}}, y = \sqrt{\frac{\cos x}{4x + c}}$$

Exercise D, Question 6

Question:

Use the substitution $z = x^{\frac{1}{2}}$ to transform the differential equation $\frac{dx}{dt} + t^{2}x = t^{2}x^{\frac{1}{2}}$

$$\frac{dt}{dt} + t^2 x = t^2 x$$

into a differential equation in *z* and *t*. By first solving the transformed equation, find the general solution of the original equation, giving *x* in terms of *t*.

Solution:

Given that
$$z = x^{\frac{1}{2}}$$
, $x = z^2$ and $\frac{dx}{dt} = 2z\frac{dz}{dt}$

$$\therefore$$
 The equation $\frac{\mathrm{d}x}{\mathrm{d}t} + t^2 x = t^2 x^{\frac{1}{2}}$ becomes

$$2z\frac{\mathrm{d}z}{\mathrm{d}t} + t^2 z^2 = t^2 z$$

Divide through by 2z

Then
$$\frac{dz}{dt} + \frac{1}{2}t^2z = \frac{1}{2}t^2$$

The integrating factor is $e^{\int \frac{1}{2}t^2 dt} = e^{\frac{1}{6}t^3}$
 $\therefore e^{\frac{1}{6}t^3} \frac{dz}{dt} + \frac{1}{2}t^2 e^{\frac{1}{6}t^3} z = \frac{1}{2}t^2 e^{\frac{1}{6}t^3}$
 $\therefore \frac{d}{dt}(ze^{\frac{1}{6}t^3}) = \frac{1}{2}t^2 e^{\frac{1}{6}t^3}$
 $\therefore z e^{\frac{1}{6}t^3} = \int \frac{1}{2}t^2 e^{\frac{1}{6}t^3} dt$

÷.,

$$z = 1 + c \mathrm{e}^{-\frac{1}{6}t^3}$$

 $= e^{\frac{1}{6}t^3} + c$

But
$$x = z^2$$
 $\therefore x = (1 + ce^{-\frac{1}{n}t^3})^2$

Exercise D, Question 7

Question:

Use the substitution $z = y^{-1}$ to transform the differential equation $\frac{dy}{dx} - \frac{1}{x}y = \frac{(x+1)^3}{x}y^2$

into a differential equation in z and x. By first solving the transformed equation, find the general solution of the original equation, giving y in terms of x.

Solution:

Let
$$z = y^{-1}$$
, then $y = z^{-1}$ and $\frac{dy}{dx} = -z^{-2} \frac{dz}{dx}$
So $\frac{dy}{dx} - \frac{1}{x}y = \frac{(x+1)^3}{x}y^2$ becomes:
 $-z^{-2} \frac{dz}{dx} - \frac{1}{x}z^{-1} = \frac{(x+1)^3}{x}z^{-2}$

Multiply through by $-z^2$

Then
$$\frac{\mathrm{d}z}{\mathrm{d}x} + \frac{1}{x}z = -\frac{(x+1)^3}{x}$$

The integrating factor is $e^{\int P dx} = e^{\int \frac{1}{x} dx} = e^{/\ln x} = x$

$$\therefore x \frac{dz}{dx} + z = -(x+1)^3$$

i.e. $\frac{d}{dx} (xz) = -(x+1)^3$
$$\therefore xz = -\int (x+1)^3 dx$$

$$= -\frac{1}{4} (x+1)^4 + c$$

$$\therefore z = -\frac{1}{4x} (x+1)^4 + \frac{c}{x}$$

$$\therefore \qquad y = -\frac{4x}{4c - (x + 1)^4}$$

Exercise D, Question 8

Question:

Use the substitution $z = y^2$ to transform the differential equation

$$2(1+x^2)\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy = \frac{1}{y}$$

into a differential equation in z and x. By first solving the transformed equation,

- **a** find the general solution of the original equation, giving *y* in terms of *x*.
- **b** Find the particular solution for which y = 2 when x = 0.

Solution:

a Given that $z = y^2$, and so $y = z^{\frac{1}{2}}$ and $\frac{dy}{dx} = \frac{1}{2} z^{-\frac{1}{2}} \frac{dz}{dx}$ The equation $2(1 + x^2) \frac{dy}{dx} + 2xy = \frac{1}{y}$ becomes $2(1 + x^2) \times \frac{1}{2} z^{-\frac{1}{2}} \frac{dz}{dx} + 2x z^{\frac{1}{2}} = z^{-\frac{1}{2}}$ Multiply the equation by $\frac{z^{\frac{1}{2}}}{1+r^2}$ Then $\frac{dz}{dr} + \frac{2x}{1+r^2}z = \frac{1}{1+r^2}$ The integrating factor is $e^{\int \frac{2x}{1+x^2} dx} = e^{\ln(1+x^2)} = 1 + x^2$ $\therefore (1 + x^2) \frac{\mathrm{d}z}{\mathrm{d}r} + 2xz = 1$ $\therefore \quad \frac{\mathrm{d}}{\mathrm{d}x} \left[(1 + x^2) z \right] = 1$ $\therefore \qquad (1+x^2)z = \int 1 \, \mathrm{d}x$ = x + c $z = \frac{x+c}{(1+x^2)}$ ÷. As $y = z^{\frac{1}{2}}$, $y = \sqrt{\frac{x+c}{(1+x^2)}}$ **b** When x = 0, y = 2 $\therefore 2 = \sqrt{c} \Rightarrow c = 4$ $\therefore y = \sqrt{\frac{x+4}{1+x^2}}$

Exercise D, Question 9

Question:

Show that the substitution $z = y^{-(n-1)}$ transforms the general equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + Py = Qy'',$$

where *P* and *Q* are functions of *x*, into the linear equation $\frac{dz}{dx} - P(n-1)z = -Q(n-1)$ (Bernoulli's equation)

Solution:

Given $z = y^{-(n-1)}$ $\therefore \quad y = z^{-\frac{1}{(n-1)}}$ $\frac{dy}{dx} = \frac{-1}{n-1} z^{-\frac{1}{n-1}-1} \frac{dz}{dx}$ $= \frac{-1}{n-1} z^{-\frac{n}{n-1}} \frac{dz}{dx}$ $\therefore \frac{dy}{dx} + Py = Qy^n$ becomes $\frac{-1}{n-1} z^{-\frac{n}{n-1}} \frac{dz}{dx} + P z^{-\frac{1}{n-1}} = Q z^{-\frac{n}{n-1}}$ Multiply each term by $-(n-1) z^{\frac{n}{n-1}}$ Then $\frac{dz}{dz} - P(n-1) z^{\frac{n}{n-1}} z^{-\frac{1}{n-1}} = -Q(n-1) z^{\frac{n}{n-1}} z^{-\frac{n}{n-1}}$

i.e.

$$\frac{\mathrm{d}z}{\mathrm{d}z} - P(n-1) \, z = -Q(n-1)$$

Exercise D, Question 10

Question:

Use the substitution u = y + 2x to transform the differential equation $\frac{dy}{dx} = \frac{-(1 + 2y + 4x)}{1 + y + 2x}$ into a differential equation in *u* and *x*. By first solving this new equation, show that the general solution of the original equation may be written $4x^2 + 4xy + y^2 + 2y + 2x = k$, where *k* is a

constant Solution:

Given
$$u = y + 2x$$
 and so $y = u - 2x$ and $\frac{dy}{dx} = \frac{du}{dx} - 2$
 \therefore the differential equation $\frac{dy}{dx} = -\frac{(1 + 2y + 4x)}{1 + y + 2x}$ becomes
 $\frac{du}{dx} - 2 = -\frac{1 + 2u}{1 + u}$
 $\therefore \quad \frac{du}{dx} = \frac{-(1 + 2u) + 2(1 + u)}{1 + u}$
 $\therefore \quad \frac{du}{dx} = \frac{-(1 + 2u) + 2(1 + u)}{1 + u}$

Separate the variables

$$\int (1 + u) \, du = \int 1 \times dx$$
$$u + \frac{u^2}{2} = x + c, \text{ where } c \text{ is constant}$$

• •

And $(y+2x) + \frac{(y+2x)^2}{2} = x + c$

$$2y + 4x + y^2 + 4xy + 4x^2 = 2x + 2c$$

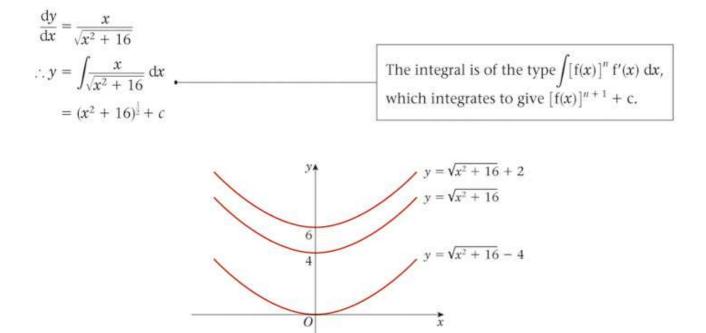
i.e. $4x^2 + 4xy + y^2 + 2y + 2x = k$, where k = 2c

Exercise E, Question 1

Question:

Solve the equation $\frac{dy}{dx} = \frac{x}{\sqrt{x^2 + 16}}$ and sketch three solution curves.

Solution:



Exercise E, Question 2

Question:

Solve the equation $\frac{dy}{dx} = xy$ and sketch the solution curves which pass through **a** (0, 1) **b** (0, 2) **c** (0, 3)

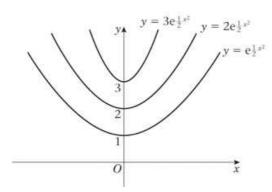
Solution:

 $\frac{dy}{dx} = xy \cdot$ Separate the variables and integrate. $\therefore \int \frac{1}{y} dy = \int x dx$ $\therefore \quad \ln y = \frac{1}{2}x^2 + c, \text{ where } c \text{ is constant}$ $\therefore \quad y = e^{\frac{1}{2}x^2 + c}$ $= e^c e^{\frac{1}{2}x^2} = Ae^{\frac{1}{2}x^2}, \text{ where } A \text{ is } e^c$

a The solution which satisfies x = 0 when y = 1

is
$$y = Ae^{\frac{1}{2}x^2}$$
 where $1 = Ae^0$ i.e. $A = 1$
 $\therefore \quad y = e^{\frac{1}{2}x^2}$

- **b** The solution for which y = 2 when x = 0 is $y = Ae^{\frac{1}{2}x^2}$
 - with $2 = Ae^0$ i.e. A = 2
 - $\therefore \quad y = 2e^{\frac{1}{2}x^2}$
- **c** The solution for which y = 3 when x = 0 is $y = 3e^{\frac{1}{2}x^2}$ The solution curves are shown in the sketch.



Exercise E, Question 3

Question:

Solve the equation $\frac{dv}{dx} = -g - kv$ given that v = u when t = 0, and that u, g and k are positive constants. Sketch the solution curve indicating the velocity which v approaches as t becomes

large.

Solution:

2.

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -g - kv \,.$$

$$\int \frac{\mathrm{d}v}{g + kv} = -\int 1 \,\mathrm{d}t$$

$$\therefore \frac{1}{k} \ln |g + kv| = -t + c \text{ where } c \text{ is a constant } *$$

When t = 0, v = u

$$\therefore \frac{1}{k} \ln |g + ku| = c$$

: Substituting *c* back into the equation *

 $v = \frac{1}{k} \left[(g + ku) e^{-1} - g \right]$

0

The required velocity is $-\frac{g}{k}$ m s⁻¹

© Pearson Education Ltd 2009

You can separate the variables by dividing both sides by (g + kv), or you could rearrange the equation as $\frac{dv}{dt} + kv = g$ and use the integrating factor e^{kt} .

Exercise E, Question 4

Question:

Solve the equation
$$\frac{dy}{dx} + y \tan x = 2 \sec x$$

Solution:

$$\frac{dy}{dx} + y \tan x = 2 \sec x$$
Use an integrating factor $e^{/\tan x \, dx} = e^{\ln \sec x} = \sec x$
Use the integrating factor $e^{/\tan x \, dx} = e^{\ln \sec x} = \sec x$

$$\therefore \quad \sec x \frac{dy}{dx} + y \sec x \tan x = 2 \sec^2 x$$

$$\therefore \quad \frac{d}{dx} (y \sec x) = 2 \sec^2 x$$

$$\therefore \qquad \frac{d}{dx} (y \sec x) = 2 \sec^2 x dx$$

$$= 2 \tan x + c$$

$$\therefore \qquad y = 2 \sin x + c \cos x$$

Exercise E, Question 5

Question:

Solve the equation
$$(1 - x^2) \frac{dy}{dx} + xy = 5x$$
 $-1 < x < 1$

Solution:

$$(1 - x^2) \frac{dy}{dx} + xy = 5x$$
 . Divide through by $(1 - x^2)$, then find the integrating factor.

Divide through by $(1 - x^2)$

$$\therefore \quad \frac{dy}{dx} + \frac{x}{1 - x^2}y = \frac{5x}{1 - x^2}$$
Use the integrating factor $e^{\int \frac{x}{1 - x^2} dx} = e^{-\frac{1}{2}\ln(1 - x^2)}$

$$= e^{\ln(1 - x^2)^{-1}} = \frac{1}{\sqrt{1 - x^2}}$$

$$\therefore \quad \frac{1}{\sqrt{1 - x^2}} \frac{dy}{dx} + \frac{x}{\sqrt{1 - x^2}}y = \frac{5x}{\sqrt{1 - x^2}}$$

$$\therefore \frac{\sqrt{1-x^2}}{\sqrt{1-x^2}} \frac{dx}{dx} + \frac{1}{(1-x^2)^{\frac{3}{2}}} y = \frac{1}{(1-x^2)^{\frac{3}{2}}}$$
$$\therefore \frac{d}{dx} \left[(1-x^2)^{-\frac{1}{2}} y \right] = \frac{5x}{(1-x^2)^{\frac{3}{2}}}$$

$$\therefore \qquad (1-x^2)^{-\frac{1}{2}}y = \int \frac{5x}{(1-x^2)^{\frac{3}{2}}} dx$$

$$= 5(1-x^2)^{-\frac{1}{2}} + c$$

:. $y = 5 + c(1 - x^2)^{\frac{1}{2}}$

Exercise E, Question 6

Question:

Solve the equation
$$x \frac{dy}{dx} + x + y = 0$$

Solution:

$$x \frac{dy}{dx} + x + y = 0$$
Take the 'x' term to the other side of the equation.
$$x \frac{dy}{dx} + y = -x$$

This is an exact equation.

So
$$\frac{d}{dx}(xy) = -x$$

 $\therefore \qquad xy = -\int x \, dx$
 $= -\frac{1}{2}x^2 + c$
 $\therefore \qquad y = -\frac{1}{2}x + \frac{c}{x}$

Exercise E, Question 7

Question:

Solve the equation
$$\frac{dy}{dx} + \frac{y}{x} = \sqrt{x}$$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = \sqrt{x}$$

The integrating factor is $e^{\int \frac{1}{x} dx} = e^{\ln x} = x$

Multiply the differential equation by the integrating factor:

$$x \frac{dy}{dx} + y = x\sqrt{x}$$

$$\therefore \quad \frac{d}{dx} (xy) = x^{\frac{3}{2}}$$

$$\therefore \quad xy = \int x^{\frac{3}{2}} dx$$

$$= \frac{2}{5} x^{\frac{5}{2}} + c$$

$$\therefore \quad y = \frac{2}{5} x^{\frac{3}{2}} + \frac{c}{x}$$

Exercise E, Question 8

Question:

Solve the equation
$$\frac{dy}{dx} + 2xy = x$$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy = x$$

The integrating factor is $e^{j2x \, dx} = e^{x^2}$

Multiply the differential equation by e^{x^2}

$$\therefore e^{x^2} \frac{dy}{dx} + 2xe^{x^2}y = xe^{x^2}$$

$$\therefore \frac{d}{dx}(e^{x^2}y) = xe^{x^2}$$

$$\therefore ye^{x^2} = \int xe^{x^2} dx$$

$$= \frac{1}{2}e^{x^2} + c$$

$$\therefore y = \frac{1}{2} + ce^{-x^2}$$

© Pearson Education Ltd 2009

14

Page 1 of 1

Exercise E, Question 9

Question:

Solve the equation
$$x(1 - x^2) \frac{dy}{dx} + (2x^2 - 1)y = 2x^3$$
 $0 < x < 1$

Solution:

$$x(1-x^2)\frac{dy}{dx} + (2x^2-1)y = 2x^3$$

Divide through by $x(1 - x^2)$

$$\therefore \quad \frac{dy}{dx} + \frac{2x^2 - 1}{x(1 - x^2)}y = \frac{2x^3}{x(1 - x^2)} \quad \star \quad \bullet$$

The integrating factor is $e^{\int \frac{2x^2-1}{x(1-x^2)}dx}$

$$\int \frac{2x^2 - 1}{x(1 - x)(1 + x)} dx = \int \left(-\frac{1}{x} + \frac{1}{2(1 - x)} - \frac{1}{2(1 + x)} \right) dx$$
$$= -\ln x - \frac{1}{2} \ln (1 - x) - \frac{1}{2} \ln (1 + x)$$
$$= -\ln x \sqrt{1 - x^2}$$

So the integrating factor is $e^{-\ln x\sqrt{1-x^2}} = e^{\ln \frac{1}{x\sqrt{1-x^2}}} = \frac{1}{x\sqrt{1-x^2}}$

Multiply the differential equation \star by $\frac{1}{x\sqrt{1-x^2}}$

$$\therefore \quad \frac{1}{x\sqrt{1-x^2}} \frac{dy}{dx} + \frac{2x^2 - 1}{x^2(1-x^2)^{\frac{3}{2}}} y = \frac{2x}{(1-x^2)^{\frac{3}{2}}}$$
$$\therefore \quad \frac{d}{dx} \left[\frac{1}{x\sqrt{1-x^2}} y \right] = \frac{2x}{(1-x^2)^{\frac{3}{2}}}$$

$$\therefore \qquad \frac{y}{x\sqrt{1-x^2}} = \int \frac{2x}{(1-x^2)^{\frac{3}{2}}} \, \mathrm{d}x$$

$$= 2(1 - x^2)^{-\frac{1}{2}} + c$$
$$y = 2x + cx\sqrt{1 - x^2}$$

© Pearson Education Ltd 2009

....

You will need to use partial fractions to integrate $\frac{2x^2 - 1}{x(1 - x^2)}$ and to find the integrating factor.

 $\mathbf{c} \ E = \cos pt$

Solutionbank FP2 Edexcel AS and A Level Modular Mathematics

Exercise E, Question 10

Question:

Solve the equation $R \frac{dq}{dt} + \frac{q}{c} = E$ when **a** E = 0 **b** E = constant(*R*, *c* and *p* are constants)

Solution:

$$R \frac{dq}{dt} + \frac{q}{c} = E$$

$$\therefore \quad \frac{dq}{dt} + \frac{1}{Rc} q = \frac{E}{R}$$

The integrating factor is $e^{\int \frac{1}{Rc} dt} = e^{\frac{t}{Rc}}$

$$\therefore \quad e^{\frac{t}{Rc}} \frac{dq}{dt} + \frac{1}{Rc} e^{\frac{t}{Rc}} q = \frac{E}{R} e^{\frac{t}{Rc}}$$

$$\therefore \qquad \frac{d}{dt} \left(q e^{\frac{t}{Rc}} \right) = \frac{E}{R} e^{\frac{t}{Rc}}$$

$$\therefore \qquad q e^{\frac{t}{Rc}} = \int \frac{E}{R} e^{\frac{t}{Rc}} dt$$

a When E = 0

$$\therefore \quad q e^{\frac{t}{R_c}} = k, \text{ where } k \text{ is constant.}$$

$$\therefore \quad q = k e^{-\frac{t}{R_c}}$$

b When E = constant

$$q e^{\frac{t}{R_c}} = \int \frac{E}{R} e^{\frac{t}{R_c}} dt$$
$$= E c e^{\frac{t}{R_c}} + k, \text{ where } k \text{ is constant}$$
$$\therefore \quad q = E c + k e^{-\frac{t}{R_c}}$$

c When $E = \cos pt$

$$qe^{\frac{t}{R_c}} = \int \frac{1}{R} \cos pt \ e^{\frac{t}{R_c}} dt \quad *$$

i.e.
$$\int \frac{1}{R} \cos pt \ e^{\frac{t}{R_c}} = ce^{\frac{t}{R_c}} \cos pt + \int cpe^{\frac{t}{R_c}} \sin pt \ dt \quad \text{Use integration by parts.}$$
$$\int \frac{1}{R} \cos pte^{\frac{t}{R_c}} dt = ce^{\frac{t}{R_c}} \cos pt + Rpc^2 \ e^{\frac{t}{R_c}} \sin pt - \int Rp^2 c^2 e^{\frac{t}{R_c}} \cos pt \ dt \quad \text{Use 'parts' again.}$$
$$\therefore \quad \int \left(\frac{1}{R} + Rp^2 c^2\right) \ e^{\frac{t}{R_c}} \cos pt \ dt = ce^{\frac{t}{R_c}} (\cos pt + Rpc \sin pt) + k, \text{ where } k \text{ is a constant}$$
$$\therefore \quad \frac{1}{R} \int e^{\frac{t}{R_c}} \cos pt \ dt = \frac{c}{(1 + R^2 p^2 c^2)} \ e^{\frac{t}{R_c}} (\cos pt + Rpc \sin pt) + \frac{k}{(1 + R^2 p^2 c^2)}$$

From *

$$q e^{\frac{t}{Rc}} = \frac{c}{(1+R^2p^2c^2)} e^{\frac{t}{Rc}}(\cos pt + Rpc\sin pt) + \frac{k}{(1+R^2p^2c^2)}$$

$$\therefore \quad q = \frac{c}{(1+R^2p^2c^2)} (\cos pt + Rpc\sin pt) + k'e^{-\frac{t}{Rc}}, \text{ where } k' = \frac{k}{1+R^2p^2c^2} \text{ is constant}$$

© Pearson Education Ltd 2009

This is a difficult question – particularly part c. You may decide to omit this question, unless you want a challenge.

Exercise E, Question 11

Question:

Find the general solution of the equation $\frac{dy}{dx} - ay = Q$, where *a* is a constant, giving your answer in terms of *a*, when

a
$$Q = k e^{\lambda x}$$

b
$$Q = ke^{ax}$$

$$(k, \lambda \text{ and } n \text{ are constants}).$$

Solution:

Given that
$$\frac{dy}{dx} - ay = Q$$

The integrating factor is $e^{i-adx} = e^{-ax}$

Then
$$e^{-ax} \frac{dy}{dx} - ae^{-ax} y = Qe^{-ax}$$

 $\therefore \qquad \frac{d}{dx} (ye^{-ax}) = Qe^{-ax}$

.

$$ye^{-ax} = \int Qe^{-ax} dx$$

a When $Q = ke^{\lambda x}$

$$ye^{-ax} = \int ke^{(\lambda - a)x} dx$$
$$= \frac{k}{\lambda - a} e^{(\lambda - a)x} + c, \text{ where } c \text{ is constant}$$
$$\therefore \qquad y = \frac{k}{\lambda - a} e^{\lambda x} + ce^{ax}$$

b When $Q = ke^{ax}$

$$ye^{-ax} = \int k \, dx$$

= $kx + c$, where c is constant

$$\therefore \qquad y = (kx + c)e^{ax}$$

c When
$$Q = kx^n e^{ax}$$

$$ye^{-ax} = \int kx^{n} dx$$
$$= \frac{kx^{n+1}}{n+1} + c, \text{ where } c \text{ is constant}$$
$$\therefore \qquad y = \frac{kx^{n+1}}{n+1}e^{ax} + ce^{ax}$$

© Pearson Education Ltd 2009

When $\lambda \neq a$. For $\lambda = a$, see part **b**.

c $Q = kx^n e^{ax}$.

Exercise E, Question 12

Question:

Use the substitution $z = y^{-1}$ to transform the differential equation $x \frac{dy}{dx} + y = y^2 \ln x$, into a linear equation. Hence obtain the general solution of the original equation.

Solution:

Given that
$$z = y^{-1}$$
, then $y = z^{-1}$ so $\frac{dy}{dx} = -z^{-2}\frac{dz}{dx}$.

The equation $x \frac{dy}{dx} + y = y^2 \ln x$ becomes

$$-xz^{-2}\frac{\mathrm{d}z}{\mathrm{d}x} + z^{-1} = z^{-2}\ln x$$

Divide through by $-xz^{-2}$

 $\therefore \qquad \frac{\mathrm{d}z}{\mathrm{d}y} - \frac{z}{x} = -\frac{\ln x}{x}$

The integrating factor is $e^{-\int_x^1 dx} = e^{-\ln x} = e^{\ln \frac{1}{x}} = \frac{1}{x}$

$$\therefore \qquad \frac{1}{x}\frac{\mathrm{d}z}{\mathrm{d}x} - \frac{z}{x^2} = -\frac{\ln x}{x^2}$$

$$\therefore \qquad \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{x}z\right) = -\frac{\mathrm{ln}x}{x^2}$$

. .

$$\frac{1}{x}z = -\int \frac{1}{x^2} \ln x \, dx$$
$$= -\left[-\frac{1}{x}\ln x + \int \frac{1}{x^2} dx\right]$$
$$= \frac{1}{x}\ln x + \frac{1}{x} + c$$
$$z = \ln x + 1 + cx.$$

٠.

As
$$y = z^{-1}$$
 : $y = \frac{1}{1 + cx + \ln x}$

© Pearson Education Ltd 2009

Use the substitution to express y in terms of z and $\frac{dy}{dx}$ in terms of z and $\frac{dz}{dx}$.

Exercise E, Question 13

Question:

Use the substitution $z = y^2$ to transform the differential equation $2 \cos x \frac{dy}{dx} - y \sin x + y^{-1} = 0$, into a linear equation. Hence obtain the general solution of the original equation.

Solution:

Given that
$$z = y^2$$
, $y = z^{\frac{1}{2}}$ and $\frac{dy}{dx} = \frac{1}{2}z^{-\frac{1}{2}}\frac{dz}{dx}$

The differential equation

$$2\cos x \frac{\mathrm{d}y}{\mathrm{d}x} - y\sin x + y^{-1} = 0 \text{ becomes}$$
$$\cos x \, z^{-\frac{1}{2}} \frac{\mathrm{d}z}{\mathrm{d}x} - z^{\frac{1}{2}}\sin x + z^{-\frac{1}{2}} = 0$$

Divide through by $z^{-\frac{1}{2}}$

then $\cos x \frac{\mathrm{d}z}{\mathrm{d}x} - z \sin x = -1$ •		This becomes an exact equation which can be solved directly.
λ-	$\frac{\mathrm{d}}{\mathrm{d}x}\left(z\cos x\right) = -1$	
č.	$z\cos x = -\int 1 \mathrm{d}x$	
	= -x + c	
à.	$z = \frac{c - x}{\cos x}$	
÷	$y = \sqrt{\frac{c - x}{\cos x}}$	

Exercise E, Question 14

Question:

Use the substitution $z = \frac{y}{x}$ to transform the differential equation $(x^2 - y^2) \frac{dy}{dx} - xy = 0$, into a linear equation. Hence obtain the general solution of the original equation.

Solution:

Given that $z = \frac{y}{x}$, y = zx so $\frac{dy}{dx} = z + x\frac{dz}{dx}$ The equation $(x^2 - y^2)\frac{dy}{dx} - xy = 0$ becomes $(x^2 - z^2x^2)\left(z + x\frac{dz}{dx}\right) - xzx = 0$ $\therefore \quad (1 - z^2)z + (1 - z^2)x\frac{dz}{dx} - z = 0$ $\therefore \qquad x\frac{dz}{dx} = \frac{z}{1 - z^2} - z$

i.e.
$$x\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{z^3}{1-z^2}$$

Separate the variables to give

$$\int \frac{1-z^2}{z^3} dz = \int \frac{1}{x} dx$$

$$\therefore \qquad \int (z^{-3} - z^{-1}) dz = \int x^{-1} dx$$

$$\therefore \qquad \frac{z^{-2}}{-2} - \ln z = \ln x + c$$

• •

$$\frac{1}{2z^2} = \ln x + \ln z + c$$
$$= \ln xz + c$$

y = zx

But

$$\therefore \qquad (c+\ln y) = -\frac{x^2}{2y^2}$$

:. $2y^2(\ln y + c) + x^2 = 0$

Exercise E, Question 15

Question:

Use the substitution $z = \frac{y}{x}$ to transform the differential equation $\frac{dy}{dx} = \frac{y(x+y)}{x(y-x)}$, into a linear equation. Hence obtain the general solution of the original equation.

Solution:

$$z = \frac{y}{x}, \quad y = xz \text{ and } \frac{dy}{dx} = z + x \frac{dz}{dx}$$

$$\therefore \quad \frac{dy}{dx} = \frac{y(x+y)}{x(y-x)} \text{ becomes } z + x \frac{dz}{dx} = \frac{xz(x+xz)}{x(xz-x)}$$

$$\therefore \qquad z + x \frac{dz}{dx} = \frac{z(1+z)}{(z-1)}$$

So
$$x \frac{dz}{dx} = \frac{z(1+z)}{z-1} - z$$

$$=\frac{2z}{z-1}$$

Separating the variables

$$\int \frac{(z-1)}{2z} dz = \int \frac{1}{x} dx$$

$$\therefore \qquad \int \left(\frac{1}{2} - \frac{1}{2z}\right) dz = \int \frac{1}{x} dx$$

$$\therefore \qquad \frac{1}{2}z - \frac{1}{2} \ln z = \ln x + c$$

As
$$z = \frac{y}{x}$$
 \therefore $\frac{y}{2x} - \frac{1}{2}\ln\frac{y}{x} = \ln x + c$
 \therefore $\frac{y}{2x} - \frac{1}{2}\ln y + \frac{1}{2}\ln x = \ln x + c$

$$\therefore \qquad \frac{y}{2x} - \frac{1}{2}\ln y = \frac{1}{2}\ln x + c$$

Exercise E, Question 16

Question:

Use the substitution $z = \frac{y}{x}$ to transform the differential equation $\frac{dy}{dx} = \frac{-3xy}{(y^2 - 3x^2)}$, into a linear equation. Hence obtain the general solution of the original equation.

Solution:

Given that $z = \frac{y}{x'}$ so y = zx and $\frac{dy}{dx} = z + x\frac{dz}{dx}$ The equation $\frac{dy}{dx} = \frac{-3xy}{y^2 - 3x^2}$ becomes $z + x \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{-3x^2z}{z^2x^2 - 3x^2}$ $x\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{-3z}{z^2 - 3} - z$ i.e. 12

$$=\frac{-z^3}{z^2-3}$$

Separate the variables:

Then
$$\int \left(\frac{z^2-3}{z^3}\right) dz = -\int \frac{1}{x} dx$$
.
 $\therefore \quad \int \left(\frac{1}{z} - 3z^{-3}\right) dz = -\ln x + c$
 $\therefore \quad \ln z + \frac{3}{2} z^{-2} = -\ln x + c$
 $\therefore \quad \ln zx + \frac{3}{2z^2} = c$

But zx = y and $z = \frac{y}{x}$

$$\ln y + \frac{3x^2}{2y^2} = c$$

Exercise E, Question 17

Question:

Use the substitution u = x + y to transform the differential equation $\frac{dy}{dx} = (x + y + 1)(x + y - 1)$ into a differential equation in *u* and *x*. By first solving this new equation, find the general solution of the original equation, giving *y* in terms of *x*.

Solution:

Let u = x + y, then $\frac{du}{dx} = 1 + \frac{dy}{dx}$ and so $\frac{dy}{dx} = (x + y + 1)(x + y - 1)$ becomes $\frac{du}{dx} - 1 = (u + 1)(u - 1)$ $= u^2 - 1$ $\therefore \qquad \frac{du}{dx} = u^2$

Separate the variables.

Then

$$\int \frac{1}{u^2} du = \int 1 dx$$
$$-\frac{1}{u} = x + c$$

24

But
$$u = x + y$$
 : $-\frac{1}{x + y} = x + c$

÷.,

$$y + x = \frac{-1}{x+c}$$
$$y = \frac{-1}{x+c} - x$$

Exercise E, Question 18

Question:

Use the substitution u = y - x - 2 to transform the differential equation $\frac{dy}{dx} = (y - x - 2)^2$

into a differential equation in u and x. By first solving this new equation, find the general solution of the original equation, giving y in terms of x.

Solution:

Given that
$$u = y - x - 2$$
, and so $\frac{du}{dx} = \frac{dy}{dx} - 1$

$$\therefore \quad \frac{\mathrm{d}y}{\mathrm{d}x} = (y - x - 2)^2 \text{ becomes } \frac{\mathrm{d}u}{\mathrm{d}x} + 1 = u^2$$

i.e.

$$\int \frac{1}{u^2 - 1}$$

$$\therefore \qquad \int \left(\frac{1}{2(u-1)} - \frac{1}{2(u+1)}\right) du = x + c \text{ where } c \text{ is constant}$$

$$\therefore \qquad \frac{1}{2}\ln(u-1) - \frac{1}{2}\ln(u+1) = x + c$$

$$\frac{1}{2}\ln\frac{u-1}{u+1} = x + c$$

 $\therefore \qquad \frac{u-1}{u+1} = e^{2c+2x} = Ae^{2x} \text{ where } A = e^{2c} \text{ is a constant}$

$$\therefore \qquad u-1 = Aue^{2x} + Ae^{2x}$$

$$\therefore \qquad u(1 - Ae^{2x}) = (1 + Ae^{2x})$$

$$\therefore \qquad \qquad u = \frac{1 + A \mathrm{e}^{2x}}{1 - A \mathrm{e}^{2x}}$$

But u = y - x - 2

:.
$$y = x + 2 + \frac{1 + Ae^{2x}}{1 - Ae^{2x}}$$

© Pearson Education Ltd 2009

(u + 1)