Review Exercise Exercise A, Question 1

Question:

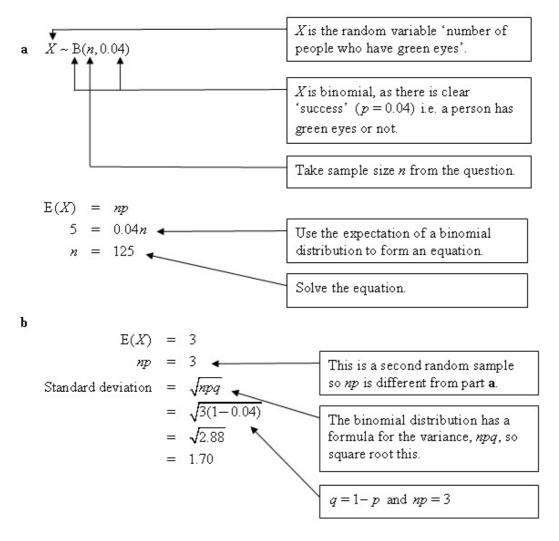
It is estimated that 4% of people have green eyes. In a random sample of size n, the expected number of people with green eyes is 5.

a Calculate the value of n.

The expected number of people with green eyes in a second random sample is 3.

b Find the standard deviation of the number of people with green eyes in this second sample. *E*

Solution:



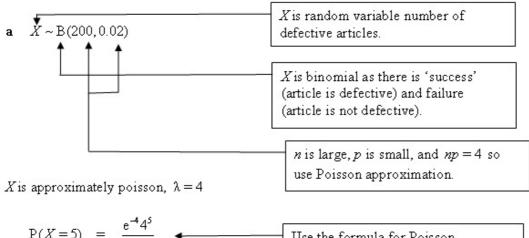
Review Exercise Exercise A, Question 2

Question:

In a manufacturing process, 2% of the articles produced are defective. A batch of 200 articles is selected.

- **a** Giving a justification for your choice, use a suitable approximation to estimate the probability that there are exactly 5 defective articles.
- **b** Estimate the probability there are less than 5 defective articles. E

Solution:



	P(X=5) = - = 0.	5!	Use the formula for Poisson probability. You can also use tables: $P(X \le 5) - P(X \le 4)$ which gives the same answer.
b	P(X < 5) = P(X < 5)	(<i>X</i> ≤ 4)	'Less than 5' does <i>not</i> include 5.

X can only take discrete values and

tables include the value you look up.

1

© Pearson Education Ltd 2009

= 0.6288

Review Exercise Exercise A, Question 3

Question:

A continuous random variable \boldsymbol{X} has probability density function

$$f(x) = \begin{cases} k(4x - x^3), & 0 \le x \le 2, \\ 0, & \text{otherwise,} \end{cases}$$

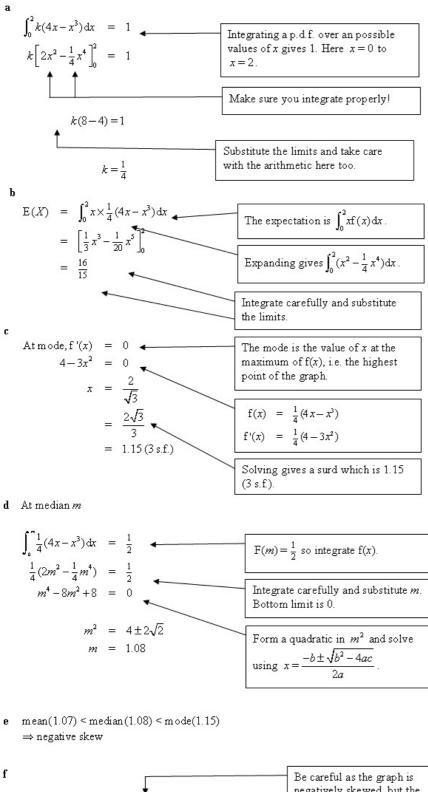
where k is a positive constant.

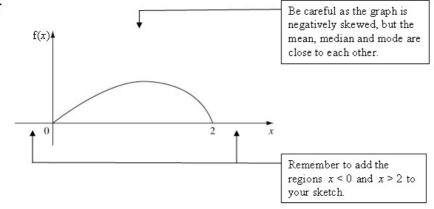
a Show that
$$k = \frac{1}{4}$$
.

Find

- **b** E(X),
- \mathbf{c} the mode of X,
- **d** the median of X.
- e Comment on the skewness of the distribution.
- **f** Sketch f(x).

Ε





Review Exercise Exercise A, Question 4

Question:

A fair coin is tossed 4 times. Find the probability that **a** an equal number of heads and tails occur,

- **b** all the outcomes are the same,
- c the first tail occurs on the third throw.

Ε

Solution:

a Let X be the random val 'the number of heads'. $X \sim B(4, 0.5)$ $P(X = 2) = C_2^4 0.5^2 \times 0.5^4$	Binomial distribution with number of tosses, $n = 4$ and 'success' is head 'failure' is tail
$= \frac{4!}{2!2!} \underbrace{0.5^2 \times 0}_{= 0.375}$	0.5 ² Use the formula for the probability of a binomial distribution.
	$\frac{4!}{2!2!} = \frac{4 \times 3 \times 2 \times 1}{(2 \times 1) \times (2 \times 1)} = 6$
b $P(X=4)$ or $P(X=0)$	'Outcomes are the same' HHHH i.e. $X = 4$ TTTT i.e. $X = 0$
= 0.125	$P(HHHH) = 0.5^{4}$ $P(TTTT) = 0.5^{4}$ 'of' means add them.
c $P(HHT) = 0.5^{3}$ = 0.125	'The first tail occurs on the third throw' means the first two outcomes must be heads so no C_r^{\varkappa} required.

Review Exercise Exercise A, Question 5

Question:

Accidents on a particular stretch of motorway occur at an average rate of 1.5 per week.

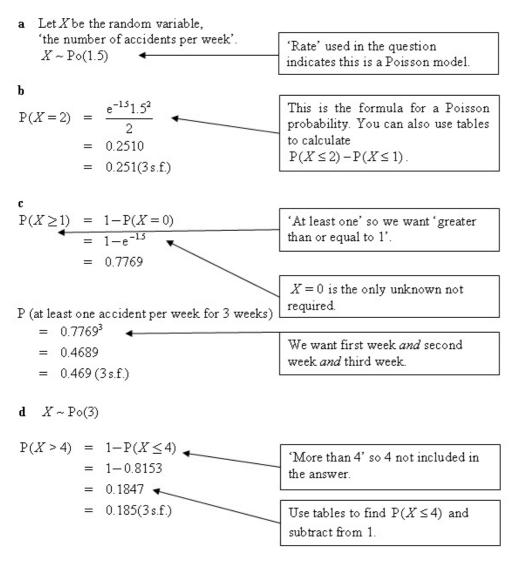
a Write down a suitable model to represent the number of accidents per week on this stretch of motorway.

Ε

Find the probability that

- **b** there will be 2 accidents in the same week,
- c there is at least one accident per week for 3 consecutive weeks,
- **d** there are more than 4 accidents in a two-week period.

Solution:

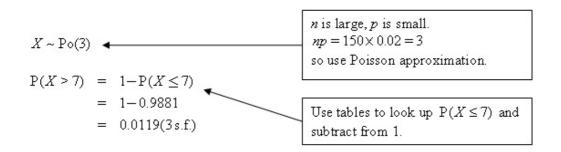


Review Exercise Exercise A, Question 6

Question:

The random variable $X \sim B(150, 0.02)$. Use a suitable approximation to estimate $P(X \ge 7)$. **E**

Solution:



Review Exercise Exercise A, Question 7

Question:

A continuous random variable X has probability density function f(x) where,

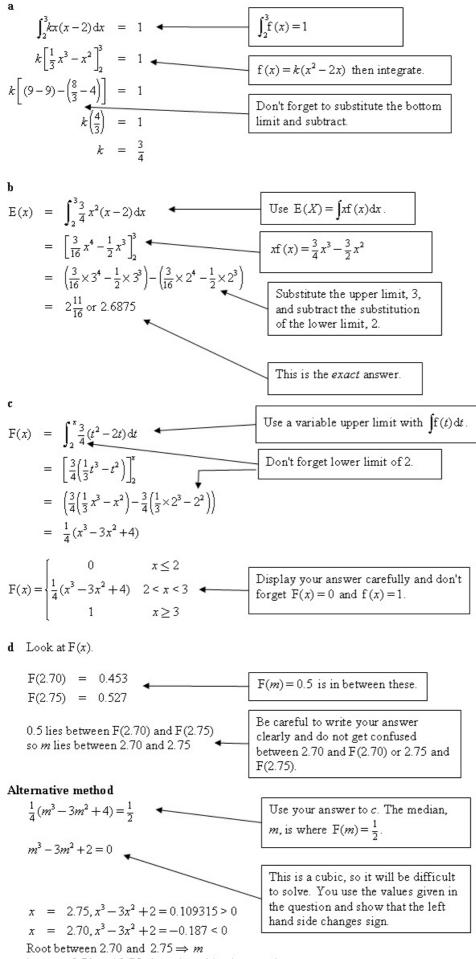
$$f(x) = \begin{cases} kx(x-2), & 2 \le x \le 3, \\ 0, & \text{otherwise,} \end{cases}$$

where k is a positive constant.

a Show that
$$k = \frac{3}{4}$$
.

Find

- **b** E(X),
- **c** the cumulative distribution function F(x).
- **d** Show that the median value of X lies between 2.70 and 2.75. E



between 2.70 and 2.75 since the cubic changes sign.

Review Exercise Exercise A, Question 8

Question:

The probability of a bolt being faulty is 0.3. Find the probability that in a random sample of 20 bolts there are

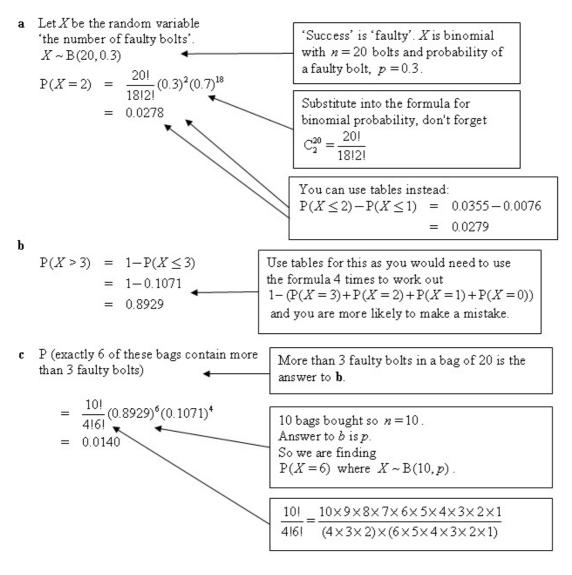
a exactly 2 faulty bolts,

b more than 3 faulty bolts.

These bolts are sold in bags of 20. John buys 10 bags.

Find the probability that exactly 6 of these bags contain more than 3 faulty bolts.

Solution:



Review Exercise Exercise A, Question 9

Question:

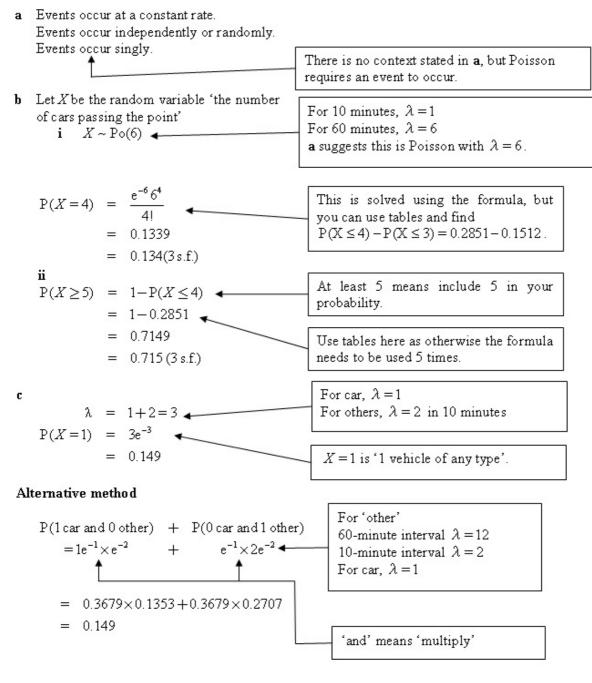
a State two conditions under which a Poisson distribution is a suitable model to use in statistical work.

The number of cars passing an observation point in a 10-minute interval is modelled by a Poisson distribution with mean 1.

- **b** Find the probability that in a randomly chosen 60-minute period there will be
 - i exactly 4 cars passing the observation point,
 - ii at least 5 cars passing the observation point.

The number of other vehicles, (i.e. other than cars), passing the observation point in a 60-minute interval is modelled by a Poisson distribution with mean 12.

Find the probability that exactly 1 vehicle, of any type, passes the observation point in a 10-minute period.



Review Exercise Exercise A, Question 10

Question:

The continuous random variable Y has cumulative distribution function F(y) given by

$$F(y) = \begin{cases} 0, & y < 1, \\ k(y^4 + y^2 - 2), & 1 \le y \le 2, \\ 1, & y > 2. \end{cases}$$

- **a** Show that $k = \frac{1}{18}$.
- **b** Find $P(Y \ge 1.5)$.
- c Specify fully the probability density function f(y). E

Solution:

$$F(2) = 1$$

$$k(2^{4} + 2^{2} - 2) = 1$$

$$18k = 1$$

$$k = \frac{1}{18}$$

$$F(y) \text{ is the cumulative distribution function, so F(2) is found and equated to 1, the total probability.$$

$$F(Y > 1.5) = 1 - P(Y \le 1.5)$$

$$= 1 - F(1.5)$$

$$= 1 - F(1.5)$$

$$= 0.705 \left[\text{or } \frac{203}{288} \right]$$

$$f(y) = \frac{dF(y)}{dy}$$

$$= \frac{d}{dy} \left[\frac{1}{18} (y^{4} + y^{2} - 2) \right]$$

$$= \frac{1}{18} (4y^{3} + 2y)$$

$$= \frac{1}{9} (2y^{3} + y), 1 \le y \le 2$$

$$F(y) = \begin{cases} 0, \text{ otherwise} \\ \frac{1}{9} (2y^{3} + y), 1 \le y \le 2 \end{cases}$$

$$F(y) = 0.$$

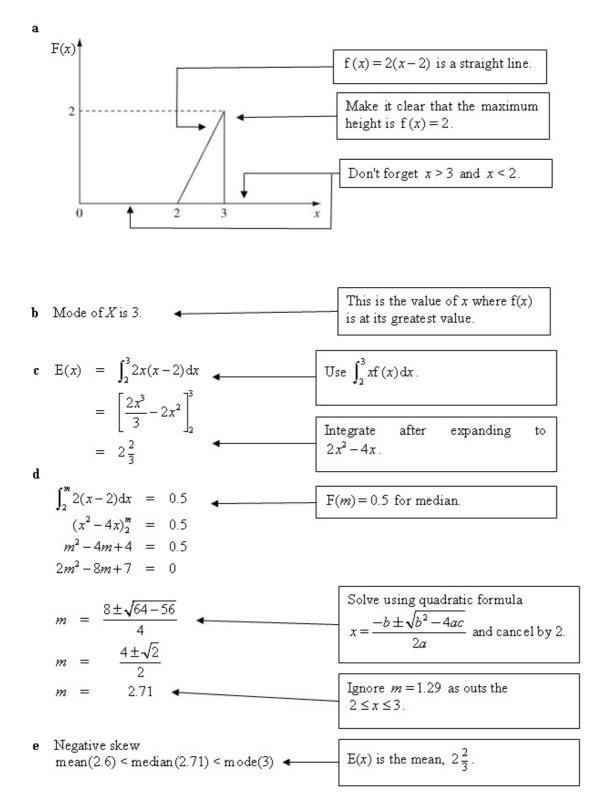
Review Exercise Exercise A, Question 11

Question:

The continuous random variable X has probability density function f(x) given by

 $f(x) = \begin{cases} 2(x-2), & 2 \le x \le 3, \\ 0, & \text{otherwise.} \end{cases}$

- **a** Sketch f(x) for all values of x.
- **b** Write down the mode of X.
- Find
- $\mathbf{c} = \mathbf{E}(X),$
- **d** the median of X.
- e Comment on the skewness of this distribution. Give a reason for your answer. E



Review Exercise Exercise A, Question 12

Question:

An engineering company manufactures an electronic component. At the end of the manufacturing process, each component is checked to see if it is faulty. Faulty components are detected at a rate of 1.5 per hour.

- a Suggest a suitable model for the number of faulty components detected per hour.
- **b** Describe, in the context of this question, two assumptions you have made in part **a** for this model to be suitable.
- c Find the probability of 2 faulty components being detected in a 1-hour period.
- **d** Find the probability of at least one faulty component being detected in a 3-hour period. *E*

Solution:

 a Let x be the random variable 'number of faulty components detected' X ~ Po(1.5)

Ъ	Faulty components occur at a constant rate. Make sure you write about the context of faulty components. Faulty components occur independently and randomly. Image: Context of faulty components. Faulty components occur singly. Faulty components.		
c	$P(X=2) = \frac{e^{-1.5}(1.5)^2}{2!}$ $= 0.251$	Use the formula for the probability of a Poisson distribution with $\lambda = 1.5$. You could also use tables and $P(X \le 2) - P(X \le 1)$.	
d	<i>X</i> ~ P₀(4.5) ◀	Three-hour period, so $\lambda = 3 \times 1.5 = 4.5$	
	$P(X \ge 1) = 1 - P(X = 0)$ = $1 - e^{-4.5}$	'At least 1' so 1 is included in the probability.	
	= 1 - 0.0111	Use formula for Poisson.	
	= 0.9889 = 0.989 (3 s.f.)		

Review Exercise Exercise A, Question 13

Question:

a Write down the conditions under which the Poisson distribution may be used as an approximation to the binomial distribution.

A call centre routes incoming telephone calls to agents who have specialist knowledge to deal with the call. The probability of the caller being connected to the wrong agent is 0.01.

- **b** Find the probability that 2 consecutive calls will be connected to the wrong agent.
- c Find the probability that more than 1 call in 5 consecutive calls are connected to the wrong agent.

The call centre receives 1000 calls each day.

- d Find the mean and variance of the number of wrongly connected calls.
- e Use a Poisson approximation to find, to 3 decimal places, the probability that more than 6 calls each day are connected to the wrong agent. E

Solution:

```
    a If X ~ B(n, p) and
    n is large
    p is small
    then X can be approximated by Po(np).
```

```
b
```

 $P(2 \text{ consecutive calls}) = 0.01^2$

c
$$X \sim B(5, 0.01)$$

 $x \sim B(5, 0.01)$
 $x \sim B(5,$

	P(X > 1) = 1 - P(X = 1) - P(X = 0) = 1-5(0.01)(0.99) ⁴ - (0.99) ⁵	'More than 1' means 1 is not included in the probability.
d	= 0.00098 X∼B(1000,0.01) ←	n = 1000 calls per day $p = 0.01probability of a wrongly connectedcall$
	mean = $np = 10$ variance = $np(1-p) = 9.9$	Use formulae for mean and variance of binomial distribution.
e	$X \sim Po(10)$ P(X > 6) = 1-P(X \le 6)	np = 10 from d .
	= 1 - 0.1301 = 0.8699	'More than 6' means 6 is not included.
	= 0.870 (3 s.f.)	

Review Exercise Exercise A, Question 14

Question:

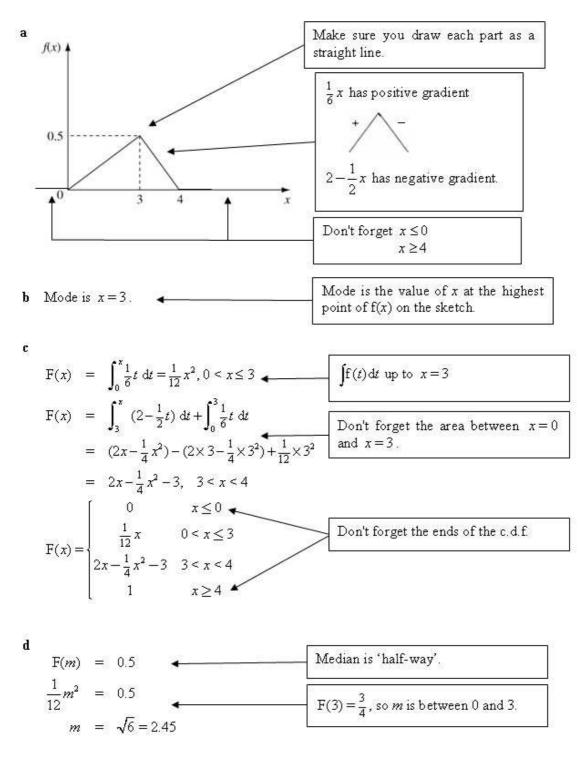
The continuous random variable X has probability density function given by

$$f(x) = \begin{cases} \frac{1}{6}x, & 0 < x < 3, \\ 2 - \frac{1}{2}x, & 3 \le x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

a Sketch the probability density function of X.

b Find the mode of X.

- c Specify fully the cumulative distribution function of X.
- d Using your answer to part c, find the median of X. E



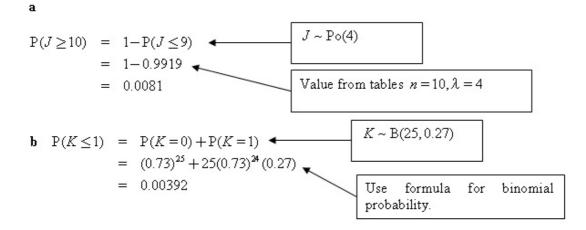
Review Exercise Exercise A, Question 15

Question:

The random variable J has a Poisson distribution with mean 4. **a** Find $P(J \ge 10)$ The random variable K has a binomial distribution with parameters n = 25, p = 0.27.

b Find $P(K \leq 1)$

Solution:



Review Exercise Exercise A, Question 16

Question:

The continuous random variable X has cumulative distribution function

 $F(x) = \begin{cases} 0, & x < 0, \\ 2x^2 - x^3, & 0 \le x \le 1, \\ 1, & x > 1. \end{cases}$

- **a** Find $P(X \ge 0.3)$.
- **b** Verify that the median value of X lies between x = 0.59 and x = 0.60.
- **c** Find the probability density function f(x).
- **d** Evaluate E(X).
- e Find the mode of X.
- f Comment on the skewness of X. Justify your answer.

a Remember to 'one minus' as we want P(X > 0.3) = 1 - F(0.3)X > 0.3. $= 1 - (2 \times 0.3^2 - 0.3^3)$ = 0.847b F(0.59) = 0.4908 < 0.5'Verify' so write your answer clearly. F(0.60) = 0.5040 > 0.50.5 lies between F(0.59) and F (0.60) so median lies between 0.59 and 0.60 С $f(x) = \frac{d F(x)}{dx}$ Differentiate c.d.f. to find p.d.f. $= \frac{\mathrm{d}}{\mathrm{d}x}(2x^2-x^3)$ $f(x) = 4x - 3x^2, 0 \le x \le 1$ Remember x < 0 and x > 1. f(x) = 0, otherwise $f(x) = \begin{cases} 4x - 3x^2 & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$ d $E(X) = \int_0^1 x f(x) dx$ $= \int_{0}^{1} (4x^2 - 3x^3) dx$ $=\left[4\frac{x^3}{3}-3\frac{x^4}{4}\right]^1$ Bottom limit substitutes to give 0. $=\frac{7}{12}$ or 0.583 e $\frac{\mathrm{df}(x)}{\mathrm{d}x} = -6x + 4$ -6x+4 = 0 For mode, $x = \frac{2}{3} \text{ or } 0.6$ $\frac{4}{3} - \frac{3}{4} = \frac{7}{12}$ Mode occurs at maximum value of f(x) where $\frac{df(x)}{dx} = 0$. mean(0.583) < median(0.59-0.6) < mode(0.6) f so negative skew