Normal distribution Exercise A, Question 1

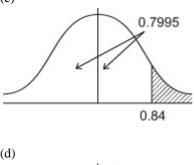
Question:

Use tables of the normal distribution to find the following.

a P(*Z* < 2.12)

b P(Z < 1.36)

c P(Z > 0.84)


d P(Z < -0.38)

Solution:

(a) P(z < 2.12) = 0.9830

(b) P(z < 1.36) = 0.9131

(c)

(d)
0.6480
-0.38
P(Z < -0.38)
= 1 - 0.6480
= 0.352

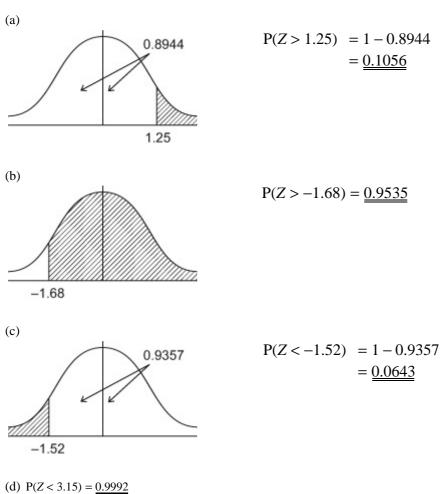
© Pearson Education Ltd 2008

P(Z > 0.84) = 1 - 0.7995= 0.2005

Normal distribution Exercise A, Question 2

Question:

Use tables of the normal distribution to find the following.


a P(Z > 1.25)

b P(Z > -1.68)

c P(Z < -1.52)

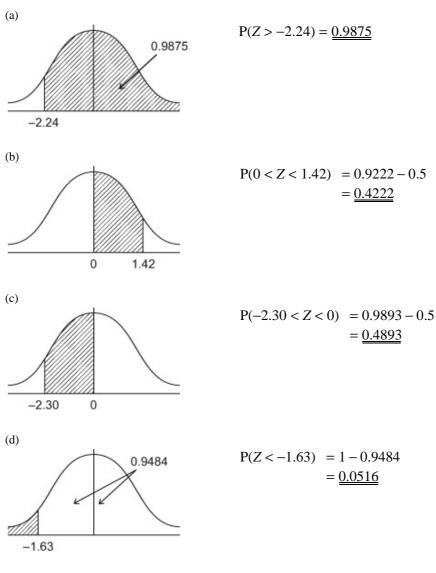
d P(Z < 3.15)

Solution:

Normal distribution Exercise A, Question 3

Question:

Use tables of the normal distribution to find the following.


a P(Z > -2.24)

b P(0 < Z < 1.42)

c P(-2.30 < Z < 0)

d P(Z < -1.63)

Solution:

Normal distribution Exercise A, Question 4

Question:

Use tables of the normal distribution to find the following.


a P(1.25 < *Z* < 2.16)

b P(-1.67 < *Z* < 2.38)

c P(-2.16 < Z < -0.85)

d P(-1.57 < Z < 1.57)

Solution:

[©] Pearson Education Ltd 2008

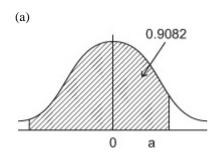
Normal distribution Exercise B, Question 1

Question:

Find the value of *a* in the following.

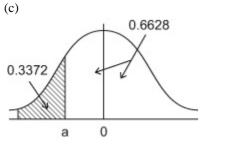
a P(Z < a) = 0.9082

b P(Z > a) = 0.0314


c P(Z < a) = 0.3372

d P(Z > a) = 0.6879

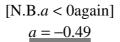
Solution:

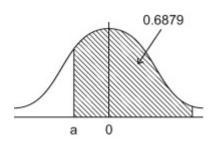

(b)

0.9686

1 - 0.0314 = 0.9686 $\therefore a = 1.86$

<u>*a* = 1.33</u>


0


а

0.0314

1 - 0.3372 = 0.6628N.B. $0.3372 < 0.5 \therefore a < 0$ $\therefore a = -0.42$

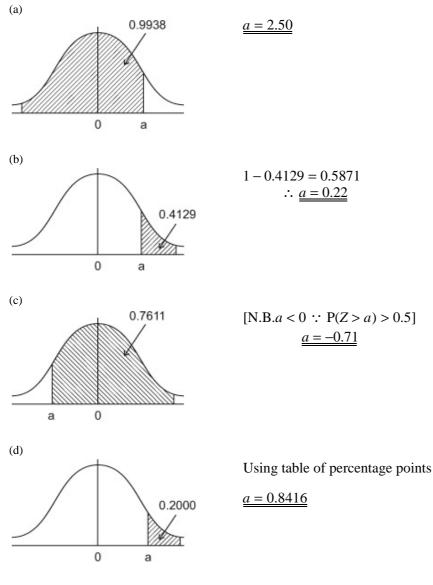
(d)

© Pearson Education Ltd 2008

Normal distribution Exercise B, Question 2

Question:

Find the value of a in the following.


a P(Z < a) = 0.9938

b P(Z > a) = 0.4129

c P(Z > a) = 0.7611

d P(Z > a) = 0.2000

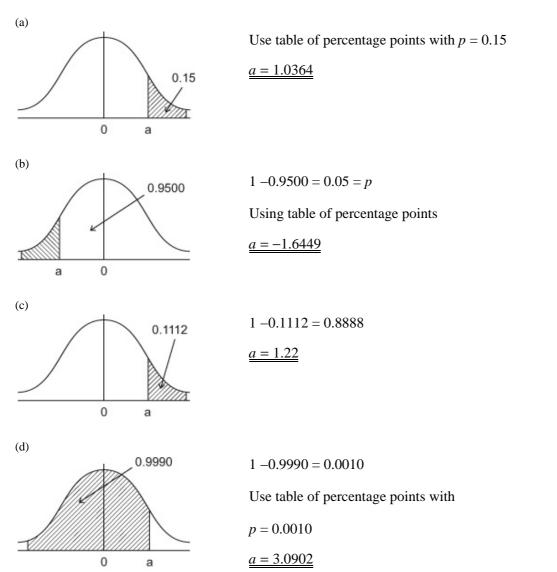
Solution:

© Pearson Education Ltd 2008

Normal distribution Exercise B, Question 3

Question:

Find the value of a in the following.


a P(Z > a) = 0.1500

b P(Z > a) = 0.9500

c P(Z > a) = 0.1112

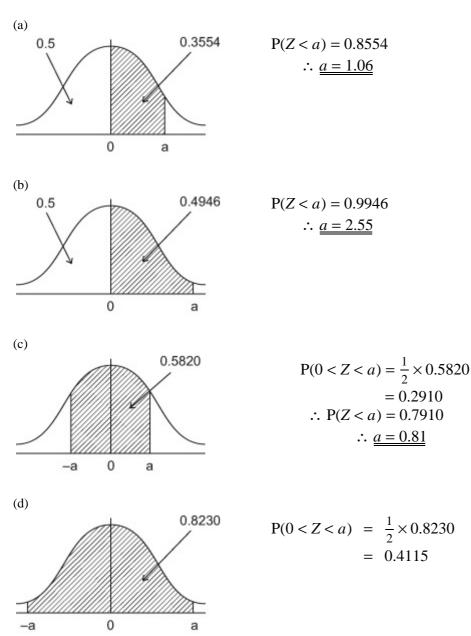
d P(Z < a) = 0.9990

Solution:

Normal distribution Exercise B, Question 4

Question:

Find the value of *a* in the following.


a P(0 < Z < a) = 0.3554

b P(0 < Z < a) = 0.4946

c P(-a < Z < a) = 0.5820

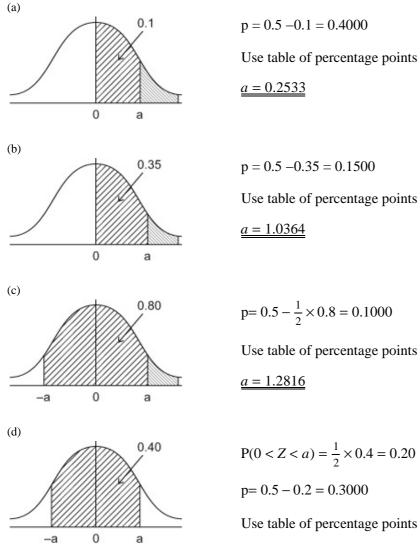
d P(-a < Z < a) = 0.8230

 $\therefore P(Z < a) = 0.9115$ $\therefore \underline{a = 1.35}$

Normal distribution **Exercise B, Question 5**

Question:

Find the value of *a* in the following.

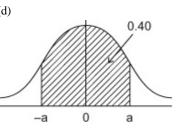

a p(0 < Z < a) = 0.10

b p(0 < Z < a) = 0.35

c p(-a < Z < a) = 0.80

d p(-a < Z < a) = 0.40

Solution:



Use table of percentage points a = 1.0364

 $p=0.5-\frac{1}{2}\times 0.8=0.1000$

Use table of percentage points

a = 1.2816

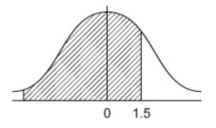
 $P(0 < Z < a) = \frac{1}{2} \times 0.4 = 0.20$ p = 0.5 - 0.2 = 0.3000Use table of percentage points

a = 0.5244

Normal distribution Exercise C, Question 1

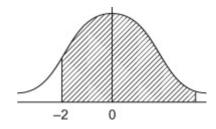
Question:

The random variable $X \sim N(30, 2^2)$.


Find **a** P(X < 33),

b P(X > 26).

Solution:


(a)

$$P(X < 33) = P\left(Z < \frac{33 - 30}{2}\right)$$

= P(Z < 1.5)
= 0.9332

(b)

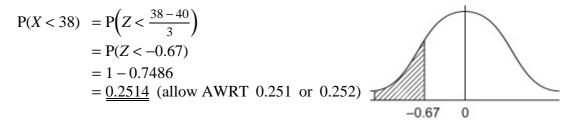
$$P(X > 26) = P\left(Z > \frac{26 - 30}{2}\right)$$

= P(Z > -2)
= 0.9772

Normal distribution Exercise C, Question 2

Question:

The random variable $X \sim N(40, 9)$.


Find **a** P(X > 45),

b P(*X* < 38).

Solution:

(a)

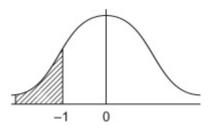
P(X > 45) = P
$$\left(Z > \frac{45 - 40}{\sqrt{9}}\right)$$

= P(Z > 1.67)
= 1 - 0.9525
= 0.0475 (allow AWRT 0.048)
(b)

Normal distribution Exercise C, Question 3

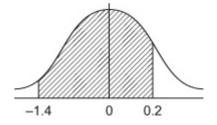
Question:

The random variable $Y \sim N(25, 25)$.


Find **a** P(Y < 20),

b P(18 < Y < 26).

Solution:


(a)

$$P(Y < 20) = P\left(Z < \frac{20 - 25}{\sqrt{25}}\right)$$

= P(Z < -1)
= 1 - 0.8413
= 0.1587

(b)

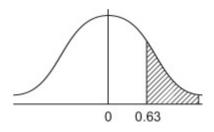
$$P(18 < Y < 26) = P\left(\frac{18 - 25}{5} < Z < \frac{26 - 25}{5}\right)$$

= P(-1.4 < Z < 0.2)
= (0.5793 - 0.5) + (0.9192 - 0.5)
= 0.4985

Normal distribution Exercise C, Question 4

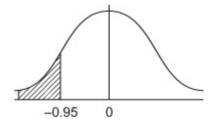
Question:

The random variable $X \sim N(18, 10)$.


Find **a** P(X > 20),

b P(X < 15).

Solution:


(a)

$$P(X > 20) = P\left(Z > \frac{20 - 18}{\sqrt{10}}\right)$$

= P(Z > 0.6324 ...) Use 0.63
= 1 - 0.7357
= 0.2643 (Calculator 0.26354)
allow AWRT 0.264 or 0.263

(b)

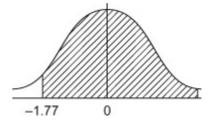
$$P(X < 15) = P\left(Z < \frac{15 - 18}{\sqrt{10}}\right)$$

= P(Z < -0.9486 ...) [Use - 0.95]
= 1 - 0.8289
= 0.1711 (Calculator: 0.17139 ...)
allow AWRT 0.171

Normal distribution Exercise C, Question 5

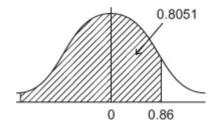
Question:

The random variable $X \sim N(20, 8)$.


Find **a** P(X > 15),

b the value of *a* such that P(X < a) = 0.8051.

Solution:

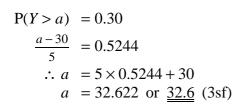

(a)

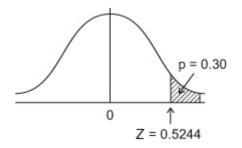
$$P(X > 15) = P\left(Z > \frac{15 - 20}{\sqrt{8}}\right)$$

= P(Z > -1.767 ...) Use - 1.77
= 0.9616 (Calculator: 0.96145 ...)
allow AWRT 0.961 or 0.962

(b)

P(X < a) = 0.8051
P
$$\left(Z < \frac{a - 20}{\sqrt{8}}\right)$$
 = 0.8051
∴ $\frac{a - 20}{\sqrt{8}}$ = 0.86
∴ a = 22.43 (allow AWRT 22.4)

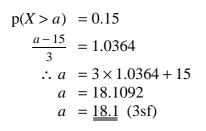

Normal distribution Exercise C, Question 6

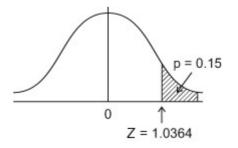

Question:

The random variable $Y \sim N(30, 5^2)$.

Find the value of *a* such that P(Y > a) = 0.30.

Solution:


Normal distribution Exercise C, Question 7


Question:

The random variable $X \sim N(15, 3^2)$.

Find the value of *a* such that P(X > a) = 0.15.

Solution:

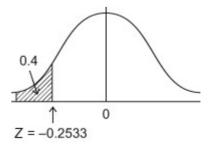
Normal distribution Exercise C, Question 8

Question:

The random variable $X \sim N(20, 12)$.

Find the value of a and the value of b such that

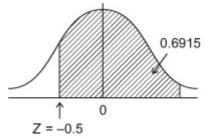
a P(X < a) = 0.40,


b P(X > b) = 0.6915.

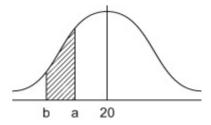
c Write down P(b < X < a).

Solution:

(a)


$$p(X < a) = 0.40$$
 Use P= 0.4000
 $\frac{a - 20}{\sqrt{12}} = -0.2533$
 $a = 19.122 \dots \therefore a = \underline{19.1}$ (3sf)

(b)


P(X >b) = 0.6915

$$\frac{b-20}{\sqrt{12}}$$
 = -0.5
∴b = 18.267 ... ∴b= 18.3 (3sf)

(c)

p(b < X < a)= 0.40 - [1 - 0.6915] = <u>0.0915</u>

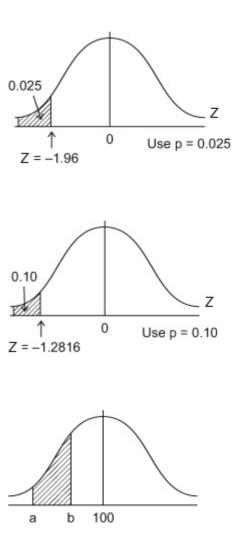
Normal distribution Exercise C, Question 9

Question:

The random variable $Y \sim N(100, 15^2)$.

Find the value of a and the value of b such that

a P(Y > a) = 0.975,


b P(Y < b) = 0.10.

c Write down P(a < Y < b).

Solution:

(a)

P(Y > a) = 0.975 ∴ $\frac{a - 100}{15}$ = -1.96 ∴ a = <u>70.6</u>

(b)

P(Y
∴
$$\frac{b-100}{15}$$
 = -1.2816
∴ b = 80.776 or 80.8 (3sf)

(c)

P(a < Y < b) = 0.10 - 0.025 = 0.075

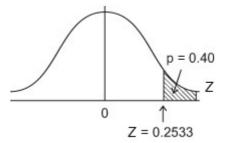
Normal distribution Exercise C, Question 10

Question:

The random variable $X \sim N(80, 16)$.

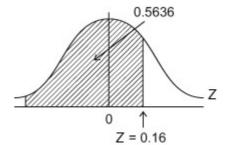
Find the value of a and the value of b such that

a P(X > a) = 0.40,

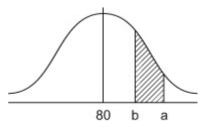

b P(X < b) = 0.5636.

c Write down P(b < X < a).

Solution:


(a)

P(X > a) = 0.40
∴
$$\frac{a - 80}{\sqrt{16}}$$
 = 0.2533
∴ a = 81.0 (3sf)


(b)

$$P(X < b) = 0.5636$$

$$\therefore \frac{b-80}{4} = 0.16$$

$$\therefore b = \underline{80.64}$$

(c)

P(b < X < a)= [1 - 0.4] - 0.5636 = 0.6 - 0.5636 = <u>0.0364</u>

Normal distribution Exercise D, Question 1

Question:

The random variable $X \sim N(\mu, 5^2)$ and P(X < 18) = 0.9032.

Find the value of μ .

Solution:

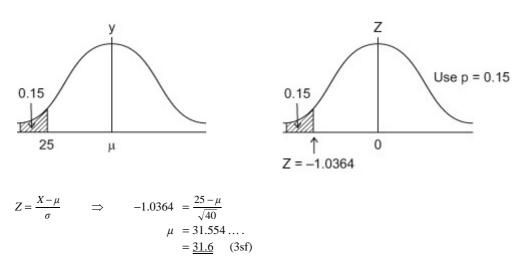
Normal distribution Exercise D, Question 2

Question:

The random variable $X \sim N(11, \sigma^2)$ and P(X > 20) = 0.01.

Find the value of σ .

Solution:


Normal distribution Exercise D, Question 3

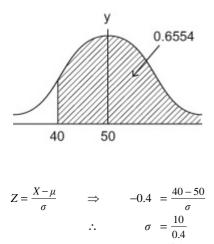
Question:

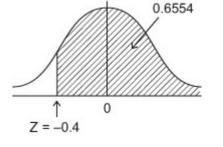
The random variable $Y \sim N(\mu, 40)$ and P(Y < 25) = 0.15.

Find the value of μ .

Solution:

Normal distribution Exercise D, Question 4


Question:


The random variable $Y \sim N(50, \sigma^2)$ and P(Y > 40) = 0.6554.

 $\sigma = 25$

Find the value of $\boldsymbol{\sigma}.$

Solution:

Ζ

Normal distribution Exercise D, Question 5

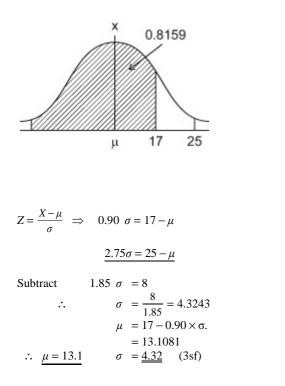
Question:

The random variable $X \sim N(\mu, \sigma^2)$.

Given that P(X < 17) = 0.8159 and P(X < 25) = 0.9970, find the value of μ and the value of σ .

Ζ

0

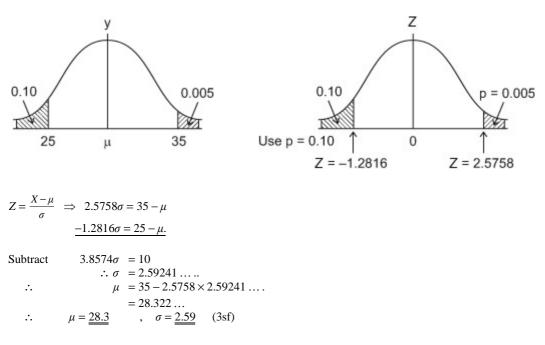

0.8159

Z = 0.90

↑

Z = 2.75

Solution:

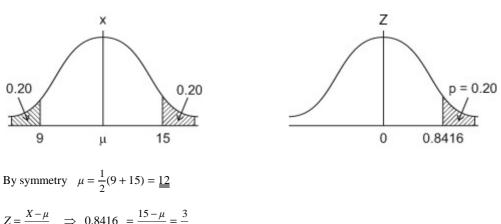

Normal distribution Exercise D, Question 6

Question:

The random variable $Y \sim N(\mu, \sigma^2)$.

Given that P(Y < 25) = 0.10 and P(Y > 35) = 0.005, find the value of μ and the value of σ .

Solution:


Normal distribution Exercise D, Question 7

Question:

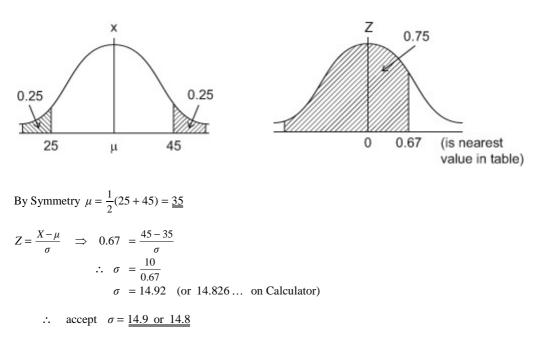
The random variable $X \sim N(\mu, \sigma^2)$.

Given that P(X > 15) = 0.20 and P(X < 9) = 0.20, find the value of μ and the value of σ .

Solution:

$$Z = \frac{X - \mu}{\sigma} \implies 0.8416 = \frac{15 - \mu}{\sigma} = \frac{3}{\sigma}$$
$$\therefore \quad \sigma = \frac{3}{0.8416}$$
$$\sigma = \underline{3.56}$$

Normal distribution Exercise D, Question 8

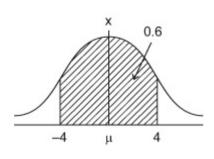

Question:

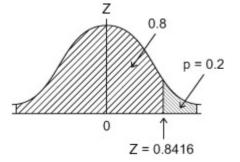
The random variable $X \sim N(\mu, \sigma^2)$.

The lower quartile of X is 25 and the upper quartile of X is 45.

Find the value of μ and the value of σ .

Solution:


Normal distribution Exercise D, Question 9


Question:

The random variable $X \sim N(0, \sigma^2)$.

Given that P(-4 < X < 4) = 0.6, find the value of σ .

Solution:

By Symmetry $\mu = \underline{0}$

$$Z = \frac{X - \mu}{\sigma} \implies 0.8416 = \frac{4}{\sigma}$$
$$\therefore \quad \sigma = \frac{4}{0.8416}$$
$$\sigma = \frac{4.75}{0.8416} \quad 3sf$$

Normal distribution Exercise D, Question 10

Question:

The random variable $X \sim N(2.68, \sigma^2)$.

Given that P(X > 2a) = 0.2 and P(X < a) = 0.4, find the value of σ and the value of *a*.

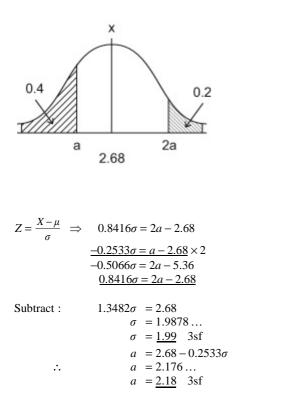
Ζ

0

Use p = 0.4 =>

Z = -0.2533

0.2


1

Z = 0.8416

(p = 0.2)

0.4

Solution:

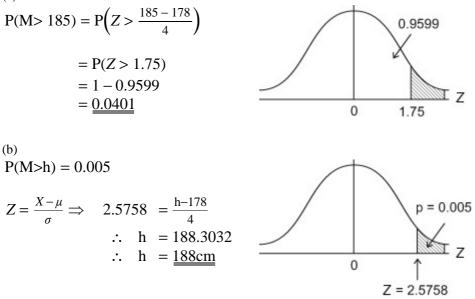
Normal distribution Exercise E, Question 1

Question:

The heights of a large group of men are normally distributed with a mean of 178 cm and a standard deviation of 4 cm.

A man is selected at random from this group.

a Find the probability that he is taller than 185 cm.


A manufacturer of door frames wants to ensure that fewer than 0.005 men have to stoop to pass through the frame.

b On the basis of this group, find the minimum height of a door frame.

Solution:

 $M \sim N(178, 4^2)$

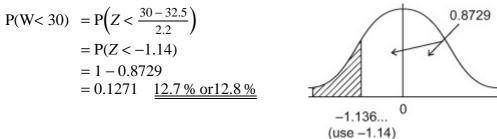
(a)

Normal distribution Exercise E, Question 2

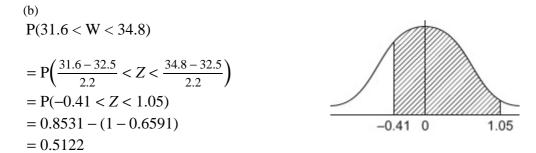
Question:

The weights of steel sheets produced by a factory are known to be normally distributed with mean 32.5 kg and standard deviation 2.2 kg.

a Find the percentage of sheets that weigh less than 30 kg.


Bob requires sheets that weigh between 31.6 kg and 34.8 kg.

b Find the percentage of sheets produced that satisfy Bob's requirements.


Solution:

 $W \sim N(32.5, 2.2^2)$

(a)

(Calculator gives 0.1279.. so allow <u>AWRT (0.127 - 0.128)</u>)

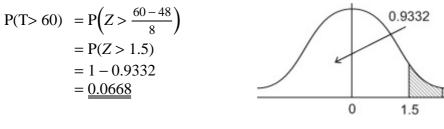
(Calculator gives 0.510856 ... So allow AWRT 0.511 or 0.512)

So 51.1% or 51.2% of sheets satisfy Bob's requirements

Normal distribution Exercise E, Question 3

Question:

The time a mobile phone battery lasts before needing to be recharged is assumed to be normally distributed with a mean of 48 hours and a standard deviation of 8 hours.


a Find the probability that a battery will last for more than 60 hours.

b Find the probability that the battery lasts less than 35 hours.

Solution:

 $T \sim N(48, 8^2)$

(a)

(b)

$$P(T < 35) = P\left(Z < \frac{35 - 48}{8}\right)$$

$$= P(Z < -1.63)$$

$$= 1 - 0.9484$$

$$= 0.0516$$
-0.625 0

(Calculator gives 0.05208... so allow AWRT 0.052)

Normal distribution Exercise E, Question 4

Question:

The random variable $X \sim N(24, \sigma^2)$.

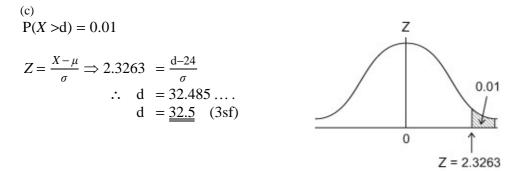
Given that P(X > 30) = 0.05, find

 \boldsymbol{a} the value of $\boldsymbol{\sigma},$

b P(X < 20),

c the value of *d* so that P(X > d) = 0.01.

Solution:


 $X \sim N \; (24, \, \sigma^2)$

(a)

$$P(X > 30) = 0.05$$

 $Z = \frac{X - \mu}{\sigma} \Rightarrow 1.6449 = \frac{30 - 24}{\sigma}$
 $\therefore \sigma = \frac{6}{1.6449} = 3.6476...$
 $\therefore \sigma = 3.65(3 \text{ sf})$
 $Q = 1.6449$

(Calculator gives 0.1364... so allow AWRT 0.136)

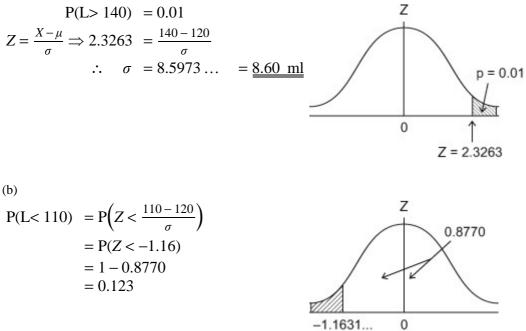
Normal distribution Exercise E, Question 5

Question:

A machine dispenses liquid into plastic cups in such a way that the volume of liquid dispensed is normally distributed with a mean of 120 ml. The cups have a capacity of 140 ml and the probability that the machine dispenses too much liquid so that the cup overflows is 0.01.

a Find the standard deviation of the volume of liquid dispensed.

b Find the probability that the machine dispenses less than 110 ml.


Ten percent of customers complain that the machine has not dispensed enough liquid.

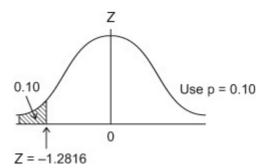
c Find the largest volume of liquid that will lead to a complaint.

Solution:

L~ N(120, σ^2)

(a)

(Calculator gives 0.12238... so allow AWRT 0.122 or 0.123)

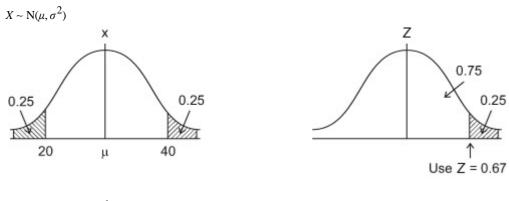

(c)

$$P(L < c) = 0.10$$

$$Z = \frac{X - \mu}{\sigma} \Rightarrow -1.2816 = \frac{c - 120}{\sigma}$$

$$\therefore c = 108.98 \dots$$

$$= \underline{109 \text{ ml}} \quad (3sf)$$



Normal distribution Exercise E, Question 6

Question:

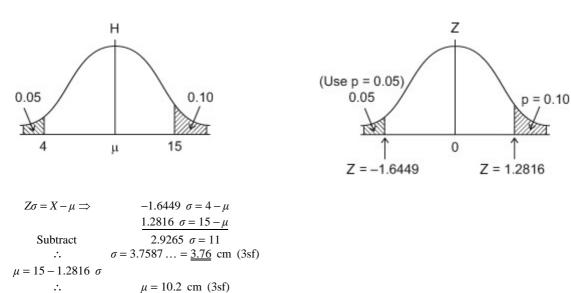
The random variable $X \sim N(\mu, \sigma^2)$. The lower quartile of X is 20 and the upper quartile is 40. Find μ and σ .

Solution:

By symmetry $\mu = \frac{1}{2}(20 + 40) = \underline{30}$ $Z = \frac{X - \mu}{\sigma} \Rightarrow \frac{40 - 30}{\sigma} = 0.67$ $\therefore \sigma = 14.925 \dots$

(Calculator gives 14.82... so allow AWRT 14.8 or 14.9)

 \overline{X}


Solutionbank S1 Edexcel AS and A Level Modular Mathematics

Normal distribution **Exercise E, Question 7**

Question:

The heights of seedlings are normally distributed. Given that 10% of the seedlings are taller than 15 cm and 5% are shorter than 4 cm, find the mean and standard deviation of the heights.

Solution:

© Pearson Education Ltd 2008

:..

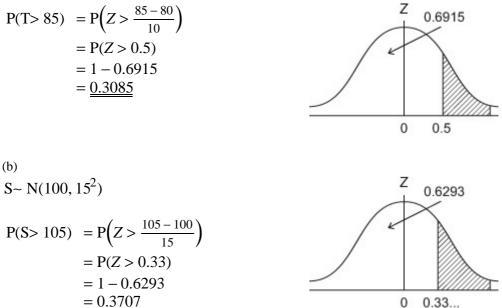
Normal distribution Exercise E, Question 8

Question:

A psychologist gives a student two different tests. The first test has a mean of 80 and a standard deviation of 10 and the student scored 85.

a Find the probability of scoring 85 or more on the first test.

The second test has a mean of 100 and a standard deviation of 15. The student scored 105 on the second test.


b Find the probability of a score of 105 or more on the second test.

c State, giving a reason, which of the student's two test scores was better.

Solution:

 $T \sim N(80, 10^2)$

(a)

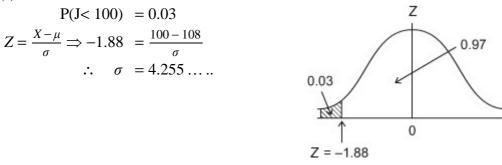
(Calculator gives 0.36944... so allow 0.369, 0.370 or 0.371)

(c) 1^{st} score is best since a lower proportion of scores will beat it. (or Z value of 1^{st} test in higher so this is the better result)

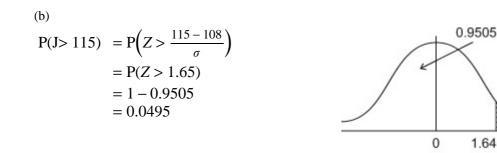
Normal distribution Exercise E, Question 9

Question:

Jam is sold in jars and the mean weight of the contents is 108 grams. Only 3% of jars have contents weighing less than 100 grams. Assuming that the weight of jam in a jar is normally distributed find


a the standard deviation of the weight of jam in a jar,

 ${f b}$ the proportion of jars where the contents weigh more than 115 grams.


Solution:

 $J{\sim} N(108,\sigma^2)$

(a)

(Calculator gives 4.2535... so allow AWRT 4.25-4.26)

(Calculator gives: 0.0499... so allow AWRT 0.050)

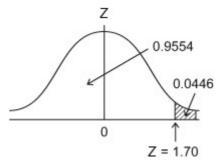
© Pearson Education Ltd 2008

1.6456... (Use 1.65)

Normal distribution Exercise E, Question 10

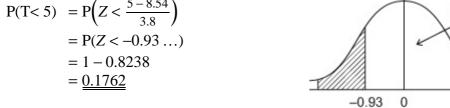
Question:

The waiting time at a doctor's surgery is assumed to be normally distributed with standard deviation of 3.8 minutes. Given that the probability of waiting more than 15 minutes is 0.0446, find


a the mean waiting time,

b the probability of waiting fewer than 5 minutes.

Solution:


T~ N(μ , 3.8²)

$$P(T > 15) = 0.0446$$

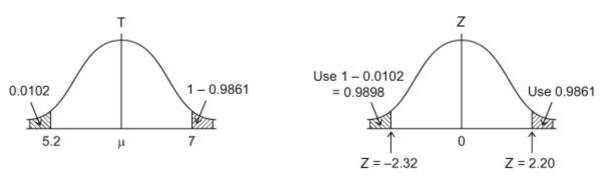
0.8238

(a)
$$Z = \frac{X - \mu}{\sigma} \Rightarrow 1.70 = \frac{15 - \mu}{3.8}$$

 $\therefore \mu = 15 - 3.8 \times 1.70$
 $\mu = \underline{8.54}$ (3sf) minutes
(b)
 $P(T < 5) = P(Z < \frac{5 - 8.54}{2.9})$

(Calculater gives 0.17577... so allow AWRT 0.176)

Normal distribution Exercise E, Question 11


Question:

The thickness of some plastic shelving produced by a factory is normally distributed. As part of the production process the shelving is tested with two gauges. The first gauge is 7 mm thick and 98.61% of the shelving passes through this gauge. The second gauge is 5.2 mm thick and only 1.02% of the shelves pass through this gauge.

Find the mean and standard deviation of the thickness of the shelving.

Solution:

 $T \sim N \ (\mu, \, \sigma^2)$

 $Z\sigma = X - \mu \implies 2.20 \ \sigma = 7 - \mu$ $-2.32 \ \sigma = 5.2 - \mu$

Subtract 4.52 $\sigma = 1.8$ $\sigma = 0.3982...$

 $\mu = 7 - 2.20 \ \sigma \implies \mu = 6.1238 \dots$ $\therefore \ \mu = 6.12 \ \text{mm}, \sigma = 0.398 \ \text{mm}$

Ζ

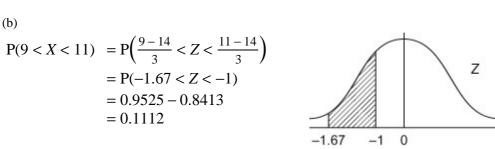
Solutionbank S1 Edexcel AS and A Level Modular Mathematics

Normal distribution Exercise E, Question 12

Question:

The random variable $X \sim N(14, 9)$. Find

a $P(X \ge 11)$,


b P(9 < X < 11).

Solution:

 $X \sim \mathrm{N}(14, 3^2)$

(a)

$$P(X \ge 11) = P\left(Z \ge \frac{11 - 14}{3}\right)$$

= P(Z \ge -1)
= 0.8413

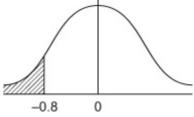
(Calculater gives: 0.11086 ... so allow AWRT 0.111)

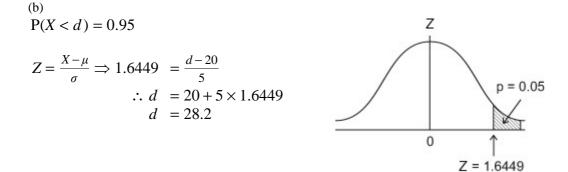
Normal distribution Exercise E, Question 13

Question:

The random variable $X \sim N(20, 5^2)$. Find

a P($X \le 16$),


b the value of *d* such that P(X < d) = 0.95.


Solution:

 $X \sim N(20,\,5^2)$

(a)

$$P(X \le 16) = P\left(Z < \frac{16 - 20}{5}\right)$$

= P(Z < -0.8)
= 1 - 0.7881
= 0.2119
-0.8

