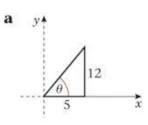
Exercise A, Question 1

Question:

Find the polar coordinates of the following points

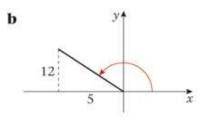
a	(5,12)	b (-5, 12)	c (-5, -12)
d	(2, -3)	e $(\sqrt{3}, -1)$	

Solution:



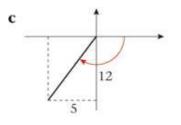
arctan
$$\left(\frac{12}{5}\right) = 67.4^{\circ}$$

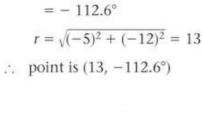
 $r = \sqrt{5^2 + 12^2} = 13$
point is (13, 67.4°)



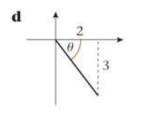
$$r = \sqrt{(-5)^2 + 12^2} = 13$$

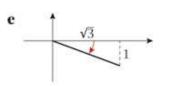
 $\theta = 180 - \arctan\left(\frac{12}{5}\right) = 112.6^\circ$
 \therefore point is (13, 112.6°)





 $\theta = -(180 - \arctan \frac{12}{5})$





 $\theta = -\arctan \frac{3}{2} = -56.3^{\circ}$ $r = \sqrt{2^2 + (-3)^2} = \sqrt{13}$ $\therefore \text{ point is } (\sqrt{13}, -56.3^{\circ})$

$$\theta = -\arctan\frac{1}{\sqrt{3}} = -30^{\circ}$$

 $r = \sqrt{\sqrt{3}^2 + (-1)^2} = \sqrt{4} = 2$
point is $(2, -30^{\circ})$

2.

Exercise A, Question 2

Question:

Find Cartesian coordinates of the following points. Angles are measured in radians.

$\mathbf{a} \left(6, \frac{\pi}{6}\right)$	b $\left(6, -\frac{\pi}{6}\right)$	$\mathbf{c} \left(6, \frac{3\pi}{4}\right)$
$\mathbf{d} \left(10, \frac{5\pi}{4}\right)$	e (2, π)	

Solution:

- $\mathbf{a} \ x = 6\cos\left(\frac{\pi}{6}\right) \qquad = \frac{6\sqrt{3}}{2} = 3\sqrt{3}$ $y = 6\sin\frac{\pi}{6} \qquad = 3 \qquad \qquad \therefore \text{ point is } (3\sqrt{3}, 3)$
- **b** $x = 6\cos\left(-\frac{\pi}{6}\right) = \frac{6\sqrt{3}}{2} = 3\sqrt{3}$ $y = 6\sin\left(-\frac{\pi}{6}\right) = -3$ \therefore point is $(3\sqrt{3}, -3)$

$$\mathbf{c} \quad x = 6\cos\left(\frac{3\pi}{4}\right) = -\frac{6}{\sqrt{2}} \text{ or } -3\sqrt{2}$$

$$y = 6\sin\left(\frac{3\pi}{4}\right) = \frac{6}{\sqrt{2}} = 3\sqrt{2} \qquad \therefore \text{ point is } (-3\sqrt{2}, 3\sqrt{2})$$

d
$$x = 10 \cos\left(\frac{5\pi}{4}\right) = -\frac{10}{\sqrt{2}} = -5\sqrt{2}$$

 $y = 10 \sin\left(\frac{5\pi}{4}\right) = \frac{-10}{\sqrt{2}} = -5\sqrt{2}$ \therefore point is $(-5\sqrt{2}, -5\sqrt{2})$

e
$$x = 2\cos(\pi) = -2$$

 $y = 2\sin(\pi) = 0$... point is (-2, 0)

Exercise B, Question 1

Question:

Find Cartesian equations for the following curves where *a* is a positive constant.

a $r = 2$	b $r = 3 \sec \theta$	c $r = 5 \operatorname{cosec} \theta$
Solution:		

a $r = 2$ is $x^2 + y^2 = 4$	
b $r = 3 \sec \theta$	
$\Rightarrow r\cos\theta = 3$	i.e. <i>x</i> = 3
c $r = 5 \operatorname{cosec} \theta$	

 $\Rightarrow r\sin\theta = 5$ i.e. y = 5

Exercise B, Question 2

Question:

Find Cartesian equations for the following curves where *a* is a positive constant.

a $r = 4a \tan \theta \sec \theta$ **b** $r = 2a \cos \theta$ **c** $r = 3a \sin \theta$

Solution:

 $r = 4a \tan \theta \sec \theta$ a $r = \frac{4a\sin\theta}{\cos^2\theta}$ $r\cos^2\theta = 4a\sin\theta$ •--Multiply by r. $r^2 \cos^2 \theta = 4ar \sin \theta$ \therefore $x^2 = 4ay$ or $y = \frac{x^2}{4a}$ $r = 2a\cos\theta$ b $r^2 = 2ar\cos\theta$ $\therefore x^2 + y^2 = 2ax$ or $(x - a)^2 + y^2 = a^2$ C $r = 3a\sin\theta \leftarrow$ Multiply by r. $r^2 = 3ar\sin\theta$ $x^{2} + y^{2} = 3ay$ or $x^{2} + \left(y - \frac{3a}{2}\right)^{2} = \frac{9a^{2}}{4}$

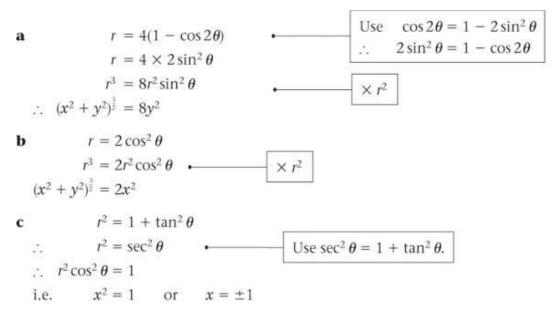
Exercise B, Question 3

Question:

Find Cartesian equations for the following curves where *a* is a positive constant.

a $r = 4(1 - \cos 2\theta)$ **b** $r = 2\cos^2 \theta$ **c** $r^2 = 1 + \tan^2 \theta$

Solution:



Exercise B, Question 4

Question:

Find polar equations for the following curves:

a
$$x^2 + y^2 = 16$$
 b $xy = 4$ **c** $(x^2 + y^2)^2 = 2xy$

Solution:

a
$$x^2 + y^2 = 16$$

 $\Rightarrow r^2 = 16$ or $r = 4$
b $xy = 4$
 $\Rightarrow r \cos \theta r \sin \theta = 4$
 $r^2 = \frac{4}{\cos \theta \sin \theta} = \frac{8}{2 \cos \theta \sin \theta}$
i.e. $r^2 = 8 \csc 2\theta$
c $(x^2 + y^2)^2 = 2xy$
 $\Rightarrow (r^2)^2 = 2r \cos \theta r \sin \theta$
 $r^4 = 2r^2 \cos \theta \sin \theta$

$$r^2 = \sin 2\theta$$

Exercise B, Question 5

Question:

Find polar equations for the following curves:

a
$$x^2 + y^2 - 2x = 0$$
 b $(x + y)^2 = 4$ **c** $x - y = 3$

Solution:

a
$$x^2 + y^2 - 2x = 0$$

 $\Rightarrow r^2 - 2r\cos\theta = 0$
 $r^2 = 2r\cos\theta$
b $(x + y)^2 = 4$
 $\Rightarrow x^2 + y^2 + 2xy = 4$
 $\Rightarrow r^2 + 2r\cos\theta r\sin\theta = 4$
 $\Rightarrow r^2 (1 + \sin 2\theta) = 4$
 $r^2 = \frac{4}{1 + \sin 2\theta}$
c $x - y = 3$

$$r \cos \theta - r \sin \theta = 3$$

$$r(\cos \theta - \sin \theta) = 3$$

$$r\left(\frac{1}{\sqrt{2}}\cos \theta - \frac{1}{\sqrt{2}}\sin \theta\right) = \frac{3}{\sqrt{2}}$$

$$r \cos\left(\theta + \frac{\pi}{4}\right) = \frac{3}{\sqrt{2}}$$

$$\therefore \qquad r = \frac{3}{\sqrt{2}}\sec\left(\theta + \frac{\pi}{4}\right)$$

Exercise B, Question 6

Question:

Find polar equations for the following curves:

a
$$y = 2x$$
 b $y = -\sqrt{3}x + a$ **c** $y = x(x - a)$

Solution:

a

$$y = 2x$$

$$\Rightarrow r \sin \theta = 2r \cos \theta$$

$$\tan \theta = 2 \quad \text{or} \quad \theta = \arctan 2$$
b

$$y = -\sqrt{3}x + a$$

$$r \sin \theta = -\sqrt{3}r \cos \theta + a$$

$$r(\sin \theta + \sqrt{3} \cos \theta) = a$$

$$r\left(\frac{1}{2}\sin \theta + \frac{\sqrt{3}}{2}\cos \theta\right) = \frac{a}{2}$$

$$r \sin\left(\theta + \frac{\pi}{3}\right) = \frac{a}{2}$$

$$\therefore \qquad r = \frac{a}{2}\operatorname{cosec}\left(\theta + \frac{\pi}{3}\right)$$
c

$$y = x(x - a)$$

$$r\sin\theta = r\cos\theta (r\cos\theta - a)$$
$$\tan\theta = r\cos\theta - a$$
$$r\cos\theta = \tan\theta + a$$
$$r = \tan\theta \sec\theta + a\sec\theta$$

Exercise C, Question 1

Question:

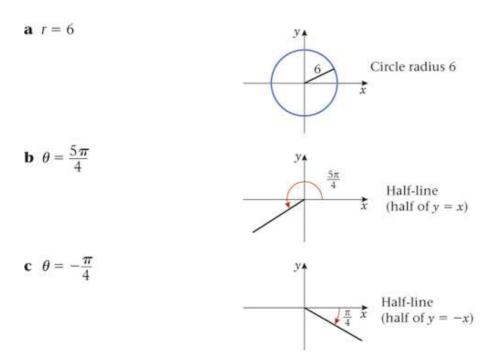
Sketch the following curves.

a
$$r = 6$$

b
$$\theta = \frac{5\pi}{4}$$

 $\mathbf{c} \ \theta = -\frac{\pi}{4}$

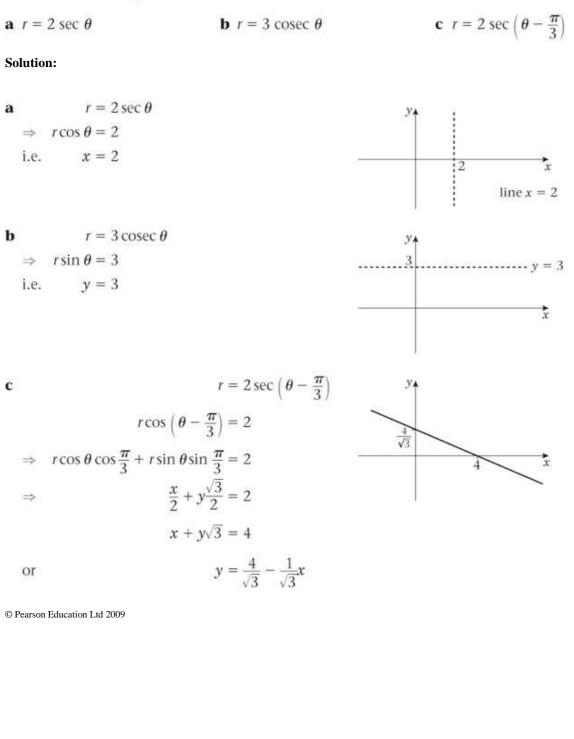
Solution:



Exercise C, Question 2

Question:

Sketch the following curves.



Exercise C, Question 3

Question:

Sketch the following curves.

a
$$r = a \sin \theta$$

b $r = a(1 - \cos \theta)$

c $r = a \cos 3\theta$

x

 $\dot{\theta} = 0$

y≱

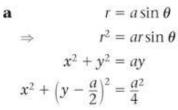
 $\frac{a}{2}$

2a

Circle centre $(0, \frac{a}{2})$ radius $\frac{a}{2}$

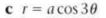
a

Solution:

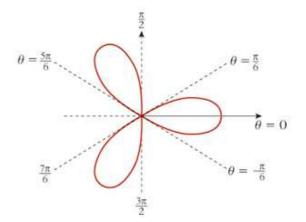


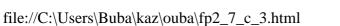


θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	0	а	2a	а	0



θ	0	$\frac{\pi}{6}$	$-\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$
r	а	0	0	0	а	0	0	а	0





Exercise C, Question 4

Question:

Sketch the following curves.

a $r = a(2 + \cos \theta)$

b $r = a(6 + \cos \theta)$

 $\mathbf{c} \ r = a \left(4 + 3 \cos \theta\right)$

Solution:

a $r = a(2 + \cos \theta)$

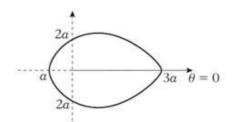
θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	3a	2 <i>a</i>	а	2 <i>a</i>	3 <i>a</i>

b $r = a(6 + \cos \theta)$

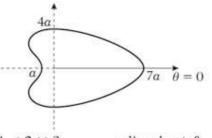
θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	7 <i>a</i>	6a	5a	6a	7 <i>a</i>

 $\mathbf{c} \ r = a(4 + 3\cos\theta)$

θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	7 <i>a</i>	4 <i>a</i>	a	4 <i>a</i>	7 <i>a</i>







 $4 < 2 \times 3$ \therefore a dimple at $\theta = \pi$.

Exercise C, Question 5

Question:

Sketch the following curves.

a $r = a(2 + \sin \theta)$

b $r = a(6 + \sin \theta)$

 $\mathbf{c} \ r = a \left(4 + 3 \sin \theta\right)$

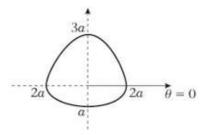
Solution:

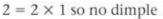
a $r = a(2 + \sin \theta)$

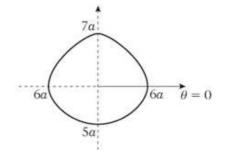
θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	2 <i>a</i>	3 <i>a</i>	2 <i>a</i>	а	2a

b $r = a(6 + \sin \theta)$

θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	6a	7a	6a	5 <i>a</i>	6 <i>a</i>



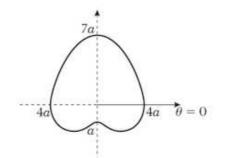




 $6 > 2 \times 1$ so no dimple

 $\mathbf{c} \ r = a(4 + 3\sin\theta)$

θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	4 <i>a</i>	7 <i>a</i>	4 <i>a</i>	а	4 <i>a</i>



 $4 < 2 \times 3$. there is a dimple at $\theta = \frac{3\pi}{2}$

The graphs in question 5 are simply rotations of the graphs in question 4.

Exercise C, Question 6

Question:

Sketch the following curves.

a $r = 2\theta$

b $r^2 = a^2 \sin \theta$

 $\mathbf{c} \ r^2 = a^2 \sin 2\theta$

Solution:

a $r = 2\theta$

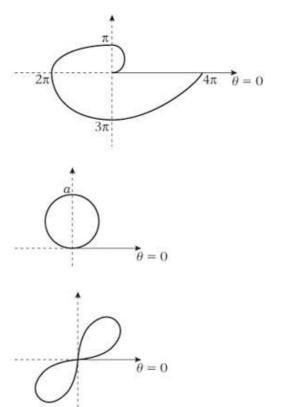
θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
r	0	π	2π	3π	4π

b $r^2 = a^2 \sin \theta$

θ	0	$\frac{\pi}{2}$	π
r	0	а	0

 $\mathbf{c} \ r^2 = a^2 \sin 2\theta$

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$
r	0	а	0	0	а	0



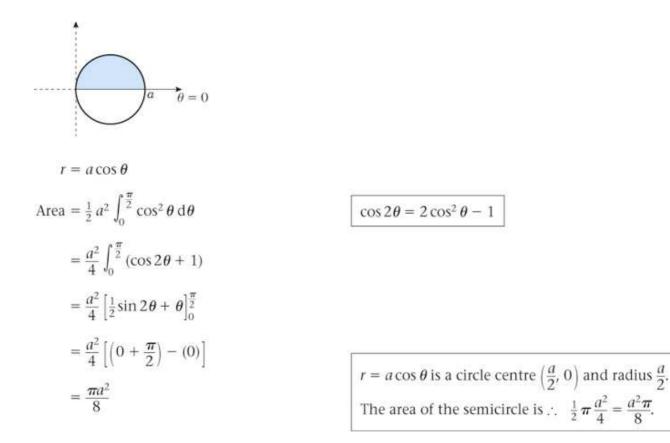
Exercise D, Question 1

Question:

Find the area of the finite region bounded by the curve with the given polar equation and the half lines $\theta = \alpha$ and $\theta = \beta$.

 $r = a \cos \theta,$ $\alpha = 0, \beta = \frac{\pi}{2}$

Solution:



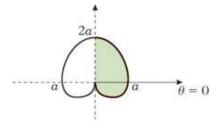
Exercise D, Question 2

Question:

Find the area of the finite region bounded by the curve with the given polar equation and the half lines $\theta = \alpha$ and $\theta = \beta$.

 $r = a (1 + \sin \theta),$ $\alpha = -\frac{\pi}{2}, \beta = \frac{\pi}{2}$

Solution:



 $r = a(1 + \sin \theta)$

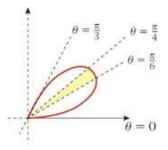
Exercise D, Question 3

Question:

Find the area of the finite region bounded by the curve with the given polar equation and the half lines $\theta = \alpha$ and $\theta = \beta$.

$$r = a \sin 3\theta,$$
 $\alpha = \frac{\pi}{6}, \beta = \frac{\pi}{4}$

Solution:



 $r = a \sin 3\theta$ Area = $\frac{1}{2} a^2 \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sin^2 3\theta d\theta$ = $\frac{a^2}{4} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} (1 - \cos 6\theta) d\theta$ · Use $\cos 6\theta = 1 - 2\sin^2 3\theta$. = $\frac{a^2}{4} \left[\theta - \frac{1}{6} \sin 6\theta \right]_{\frac{\pi}{6}}^{\frac{\pi}{4}}$ = $\frac{a^2}{4} \left[\left(\frac{\pi}{4} - \frac{1}{6} \sin \frac{3\pi}{2} \right) - \left(\frac{\pi}{6} - \frac{1}{6} \sin \pi \right) \right]$ = $\frac{a^2}{4} \left(\frac{\pi}{4} + \frac{1}{6} - \frac{\pi}{6} \right)$ = $\frac{a^2}{4} \left(\frac{\pi}{12} + \frac{2}{12} \right)$ = $\frac{(\pi + 2)a^2}{48}$

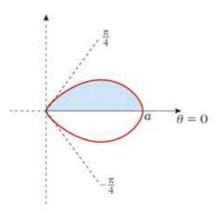
Exercise D, Question 4

Question:

Find the area of the finite region bounded by the curve with the given polar equation and the half lines $\theta = \alpha$ and $\theta = \beta$.

$$r^2 = a^2 \cos 2\theta, \qquad \qquad \alpha = 0, \ \beta = \frac{\pi}{4}$$

Solution:



$$r = a^2 \cos 2\theta$$

Area
$$= \frac{1}{2} a^2 \int_0^{\frac{\pi}{4}} \cos 2\theta \, \mathrm{d}\theta$$
$$= \left[\frac{a^2}{4} \sin 2\theta\right]_0^{\frac{\pi}{4}}$$
$$= \left(\frac{a^2}{4} \sin \frac{\pi}{2}\right) - (0)$$
$$= \frac{a^2}{4}$$

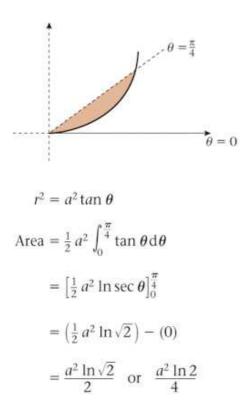
Exercise D, Question 5

Question:

Find the area of the finite region bounded by the curve with the given polar equation and the half lines $\theta = \alpha$ and $\theta = \beta$.

$$r^2 = a^2 \tan \theta$$
, $\alpha = 0$, $\beta = \frac{\pi}{4}$

Solution:



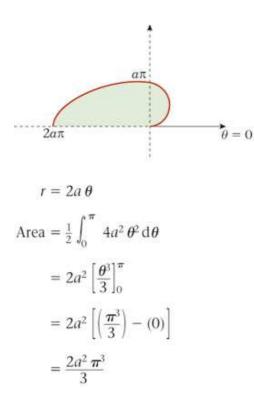
Exercise D, Question 6

Question:

Find the area of the finite region bounded by the curve with the given polar equation and the half lines $\theta = \alpha$ and $\theta = \beta$.

 $\mathbf{r} = 2a\theta, \qquad \alpha = 0, \ \boldsymbol{\beta} = \boldsymbol{\pi}$

Solution:



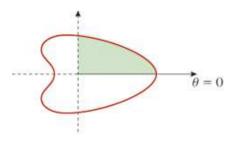
Exercise D, Question 7

Question:

Find the area of the finite region bounded by the curve with the given polar equation and the half lines $\theta = \alpha$ and $\theta = \beta$.

 $r = a(3 + 2\cos\theta), \qquad \alpha = 0, \ \beta = \frac{\pi}{2}$

Solution:



$$r = a(3 + 2\cos\theta)$$
Area $= \frac{a^2}{2} \int_0^{\frac{\pi}{2}} (9 + 12\cos\theta + 4\cos^2\theta) d\theta$

$$= \frac{a^2}{2} \int_0^{\frac{\pi}{2}} (11 + 12\cos\theta + 2\cos 2\theta) d\theta \quad \text{Use } \cos 2\theta = 2\cos^2\theta - 1.$$

$$= \frac{a^2}{2} \left[11\theta + 12\sin\theta + \sin 2\theta \right]_0^{\frac{\pi}{2}}$$

$$= \frac{a^2}{2} \left[\left(\frac{11\pi}{2} + 12 + 0 \right) - (0) \right]$$

$$= \frac{a^2}{4} (11\pi + 24)$$

Exercise D, Question 8

Question:

Show that the area enclosed by the curve with polar equation

$$r = a(p + q \cos \theta)$$
 is $\frac{2p^2 + q^2}{2}\pi a^2$.

Solution:

Area
$$= \frac{1}{2} a^{2} \int_{0}^{2\pi} (p^{2} + 2pq \cos \theta + q^{2} \cos^{2} \theta) d\theta$$
$$= \frac{1}{2} a^{2} \int_{0}^{2\pi} \left(p^{2} + 2pq \cos \theta + \frac{q^{2}}{2} \cos 2\theta + \frac{q^{2}}{2} \right) d\theta$$
$$= \frac{1}{2} a^{2} \int_{0}^{2\pi} \left(\left[\frac{2p^{2} + q^{2}}{2} \right] + 2pq \cos \theta + \frac{q^{2}}{2} \cos 2\theta \right) d\theta$$
$$= \frac{1}{2} a^{2} \left[\left[\frac{2p^{2} + q^{2}}{2} \right] \theta + 2pq \sin \theta + \frac{q^{2}}{4} \sin 2\theta \right]_{0}^{2\pi}$$
$$= \frac{1}{2} a^{2} \left[\left(\left[\frac{2p^{2} + q^{2}}{2} \right] \pi \times \mathcal{L} + 0 + 0 \right) - (0) \right]$$
$$= \frac{a^{2} (2p^{2} + q^{2}) \pi}{2}$$

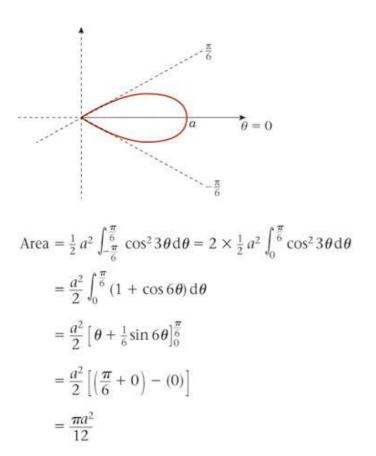
Use $\cos 2\theta = 2\cos^2 \theta - 1$.

Exercise D, Question 9

Question:

Find the area of a single loop of the curve with equation $r = a \cos 3\theta$.

Solution:



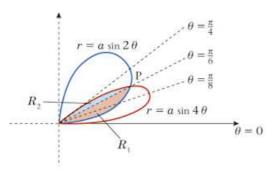
Use $\cos 6\theta = 2\cos^2 3\theta - 1$.

Exercise D, Question 10

Question:

Find the finite area enclosed between $r = a \sin 4\theta$ and $r = a \sin 2\theta$ for $0 \le \theta \le \frac{\pi}{2}$.

Solution:



Find P

$$a \sin 2\theta = a \sin 4\theta$$

⇒ $\sin 2\theta = 2 \sin 2\theta \cos 2\theta$

⇒ $0 = \sin 2\theta (2 \cos 2\theta - 1)$

⇒ $\sin 2\theta = 0, \theta = 0, \frac{\pi}{2}$

 $\cos 2\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$

$$R_1 = \frac{1}{2} a^2 \int_0^{\frac{\pi}{6}} \sin^2 2\theta d\theta$$

$$= \frac{a^2}{4} \int_0^{\frac{\pi}{6}} (1 - \cos 4\theta) d\theta$$

$$= \frac{a^2}{4} \left[\theta - \frac{1}{4} \sin 4\theta \right]_0^{\frac{\pi}{6}} = \frac{a^2}{4} \left[\left(\frac{\pi}{6} - \frac{1}{4} \sin \frac{2\pi}{3} \right) - (0) \right]$$

$$= \frac{a^2}{4} \left[\frac{\pi}{6} - \frac{\sqrt{3}}{8} \right]$$

$$R_2 = \frac{1}{2} a^2 \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sin^2 4\theta d\theta = \frac{a^2}{4} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} (1 - \cos 8\theta) d\theta$$

$$= \frac{a^2}{4} \left[\theta - \frac{1}{8} \sin 8\theta \right]_0^{\frac{\pi}{4}} = \frac{a^2}{4} \left[\left(\frac{\pi}{4} - \frac{1}{8} \sin 2\pi \right) - \left(\frac{\pi}{6} - \frac{1}{8} \sin \frac{4\pi}{3} \right) \right]$$

$$= \frac{a^2}{4} \left[\frac{\pi}{12} - \frac{\sqrt{3}}{16} \right]$$

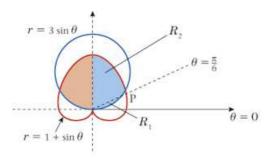
∴ enclosed area = $R_1 + R_2 = \frac{a^2}{4} \left[\frac{\pi}{4} - \frac{3\sqrt{3}}{16} \right]$

Exercise D, Question 11

Question:

Find the area of the finite region *R* enclosed by the curve with equation $r = (1 + \sin \theta)$ that lies entirely within the curve with equation $r = 3 \sin \theta$.

Solution:



First find P:

- $1 + \sin \theta = 3\sin \theta$
- $\Rightarrow \qquad 1 = 2\sin\theta$
- \Rightarrow sin $\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$

Just finding RHS of the required area, so total = $2(R_1 + R_2)$

$$R_{1} = \frac{1}{2} \int_{0}^{\frac{\pi}{6}} (3\sin\theta)^{2} d\theta = \frac{9}{4} \int_{0}^{\frac{\pi}{6}} (1 - \cos 2\theta) d\theta$$

$$R_{2} = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1 + \sin\theta)^{2} d\theta$$
So
$$R_{2} = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1 + 2\sin\theta + \sin^{2}\theta) d\theta = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left(\frac{3}{2} + 2\sin\theta - \frac{1}{2}\cos 2\theta\right) d\theta$$

$$R_{1} = \frac{9}{4} \left[\theta - \frac{1}{2}\sin 2\theta\right]_{0}^{\frac{\pi}{6}} = \frac{9}{4} \left[\left(\frac{\pi}{6} - \frac{1}{2}\sin\frac{\pi}{3}\right) - (0)\right]$$

$$R_{1} = \frac{3\pi}{8} - \frac{9\sqrt{3}}{16}$$

$$R_{2} = \frac{1}{2} \left[\frac{3}{2}\theta - 2\cos\theta - \frac{1}{4}\sin 2\theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = \frac{1}{2} \left[\left(\frac{3\pi}{4} - 0\right) - \left(\frac{\pi}{4} - \sqrt{3} - \frac{\sqrt{3}}{8}\right)\right]$$

$$R_{2} = \frac{\pi}{4} + \frac{9\sqrt{3}}{16}$$

$$\therefore R_{1} + R_{2} = \frac{5\pi}{8}$$

 \therefore Area required is $\frac{5\pi}{4}$

Exercise E, Question 1

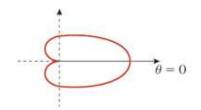
Question:

Find the points on the cardioid $r = a(1 + \cos \theta)$ where the tangents are perpendicular to the initial line.

Solution:

$$r = a(1 + \cos \theta)$$

Require $\frac{d}{d\theta} (r \cos \theta) = 0$
i.e. $\frac{d}{d\theta} (a \cos \theta + a \cos^2 \theta) = a[-\sin \theta - 2 \cos \theta \sin \theta]$
So $0 = -a \sin \theta [1 + 2 \cos \theta]$
 $\sin \theta = 0 \Rightarrow \theta = 0, \pi$ (from sketch π is not allowed)
 $\cos \theta = -\frac{1}{2} \Rightarrow \theta = \pm \frac{2\pi}{3} \Rightarrow r = a(1 - \frac{1}{2}) = \frac{a}{2}$
 \therefore points are (2a, 0) and $(\frac{a}{2}, \frac{2\pi}{3},)(\frac{a}{2}, -\frac{2\pi}{3})$



Exercise E, Question 2

Question:

Find the points on the spiral $r = e^{2\theta}$, $0 \le \theta \le \pi$, where the tangents are **a** perpendicular, **b** parallel to the initial line. Give your answers to 3 s.f.

Solution:

$$r = e^{2\theta}$$
a $x = r \cos \theta = e^{2\theta} \cos \theta$

$$\frac{dx}{d\theta} = 0 \Rightarrow 0 = 2e^{2\theta} \cos \theta - \sin \theta e^{2\theta}$$

$$0 = e^{2\theta} (2 \cos \theta - \sin \theta)$$

$$\Rightarrow \tan \theta = 2$$

$$\therefore \qquad \theta = 1.107 \text{ (rads)}$$

$$r = e^{2 \times 1.107} = 9.1549...$$

2

So at (9.15, 1.11) the tangent is perpendicular to initial line.

b
$$y = r \sin \theta = e^{2\theta} \sin \theta$$

 $\frac{dy}{d\theta} = 0 \Rightarrow 0 = 2e^{2\theta} \sin \theta + \cos \theta e^{2\theta}$
 $0 = e^{2\theta} (2 \sin \theta + \cos \theta)$
 $\Rightarrow \tan \theta = -\frac{1}{2}$
 $\therefore \qquad \theta = (-0.463...,) 2.6779...$
 $r = e^{2 \times 2.6779...} = 211.852...$

So at (212, 2.68) the tangent is parallel to initial line.

Exercise E, Question 3

Question:

- **a** Find the points on the curve $r = a \cos 2\theta$, $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$, where the tangents are parallel to the initial line, giving your answers to 3 s.f. where appropriate.
- **b** Find the equation of these tangents.

Solution:

$$r = a \cos 2\theta$$

$$\mathbf{a} \quad y = r \sin \theta = a \sin \theta \cos 2\theta$$

$$\frac{dy}{d\theta} = 0 \Rightarrow 0 = a [\cos \theta \cos 2\theta - 2 \sin 2\theta \sin \theta]$$

$$0 = a \cos \theta [\cos 2\theta - 4 \sin^2 \theta]$$

$$0 = a \cos \theta [\cos^2 \theta - 5 \sin^2 \theta]$$

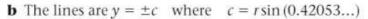
$$\cos \theta = \Rightarrow \theta = \frac{\pi}{2} \quad (\text{outside range})$$

$$\therefore \quad \tan^2 \theta = \frac{1}{5} \Rightarrow \tan \theta = \pm \frac{1}{\sqrt{5}}$$

$$\theta = \pm 0.42053...$$

$$r = a [\cos^2 \theta - \sin^2 \theta] = a [\frac{5}{6} - \frac{1}{6}] = \frac{2a}{3}$$

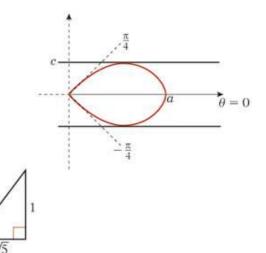
$$\therefore \quad \text{points are} \left(\frac{2a}{3}, \pm 0.421\right)$$



$$=\frac{2a}{3}\times\frac{1}{\sqrt{6}}=\frac{a\sqrt{6}}{9}$$

The line y = c is $r \sin \theta = \frac{a\sqrt{6}}{9}$

 \therefore Tangents have equations $r = \pm \frac{a\sqrt{6}}{9} \operatorname{cosec} \theta$



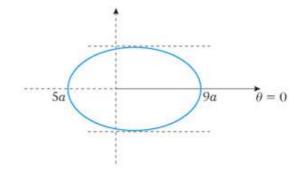
Exercise E, Question 4

Question:

Find the points on the curve with equation $r = a(7 + 2 \cos \theta)$ where the tangents are parallel to the initial line.

Solution:

 \therefore tangents are parallel at $\left(7\frac{1}{2}a, \pm 1.32\right)$



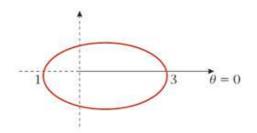
Exercise E, Question 5

Question:

Find the equation of the tangents to $r = 2 + \cos \theta$ that are perpendicular to the initial line.

Solution:

$$r = 2 + \cos \theta$$
$$x = r \cos \theta = 2 \cos \theta + \cos^2 \theta$$
$$\frac{dx}{d\theta} = 0 \Rightarrow 0 = -2 \sin \theta - 2 \cos \theta \sin \theta$$
$$0 = -2 \sin \theta (1 + \cos \theta)$$
$$\sin \theta = 0 \Rightarrow \theta = 0, \pi$$
$$\cos \theta = -1 \Rightarrow \theta = \pi$$



: tangents are perpendicular to the initial line at:

(3, 0) and $(1, \pi)$

The equations are

 $r\cos\theta = 3$ $r\cos\theta = -1$ $r = 3\sec\theta$ $r = -\sec\theta$

Exercise E, Question 6

Question:

Find the point on the curve with equation $r = a(1 + \tan \theta)$, $0 \le \theta < \frac{\pi}{2}$, where the tangent is perpendicular to the initial line.

Solution:

 $r = a(1 + \tan \theta)$ $x = r \cos \theta = a(\cos \theta + \sin \theta)$ $\frac{dx}{d\theta} = 0 \Rightarrow \qquad 0 = a[-\sin \theta + \cos \theta]$ $\Rightarrow \quad \tan \theta = 1$ $\Rightarrow \quad \theta = \frac{\pi}{4}$ $\therefore \text{ point is } (2a, \frac{\pi}{4})$

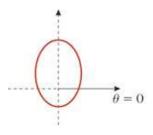
Exercise F, Question 1

Question:

Determine the area enclosed by the curve with equation $r = a(1 + \frac{1}{2}\sin \theta), a > 0, 0 \le \theta < 2\pi$, giving your answer in terms of *a* and π .

Solution:

1



$$r = a\left(1 + \frac{1}{2}\sin\theta\right)$$

Area $= \frac{1}{2}a^2 \int_0^{2\pi} \left(1 + \frac{1}{2}\sin\theta\right)^2 d\theta$
 $= \frac{a^2}{2} \int_0^{2\pi} \left(1 + \sin\theta + \frac{1}{4}\sin^2\theta\right) d\theta$
 $= \frac{a^2}{2} \int_0^{2\pi} \left(\frac{9}{8} + \sin\theta - \frac{\cos 2\theta}{8}\right) d\theta$
 $= \frac{a^2}{2} \left[\frac{9}{8}\theta - \cos\theta - \frac{\sin 2\theta}{16}\right]_0^{2\pi}$
 $= \frac{a^2}{2} \left[\left(\frac{9\pi}{4} - 1 - 0\right) - (0 - 1 - 0)\right]$
 $= \frac{9\pi a^2}{8}$

© Pearson Education Ltd 2009

Use $\cos 2\theta = 1 - 2\sin^2 \theta$.

Exercise F, Question 2

Question:

Sketch the curve with equation $r = a(1 + \cos \theta)$ for $0 \le \theta \le \pi$, where a > 0. Sketch also the line with equation $r = 2a \sec \theta$ for $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, on the same diagram. The half-line with equation $\theta = \alpha$, $0 \le \alpha \le \frac{\pi}{2}$, meets the curve at *A* and the line with equation $r = 2a \sec \theta$ at *B*. If *O* is the pole, find the value of $\cos \alpha$ for which OB = 2OA.

Solution:

$$OB = 2a \sec \alpha$$

$$OA = a (1 + \cos \alpha)$$

$$2OA = OB \Rightarrow 1 + \cos \alpha = \sec \alpha$$

$$\cos^{2} \alpha + \cos \alpha - 1 = 0$$

$$\cos \alpha = \frac{-1 \pm \sqrt{1 + 4}}{2}$$

$$\therefore \alpha \text{ is acute.}$$

$$r = a(1 + \cos \theta)$$

$$\cos\alpha = \frac{\sqrt{5}-1}{2}$$

Exercise F, Question 3

Question:

Sketch, in the same diagram, the curves with equations $r = 3 \cos \theta$ and $r = 1 + \cos \theta$ and find the area of the region lying inside both curves.

Solution:

First find P: $1 + \cos \theta = 3 \cos \theta$ $1 = 2\cos\theta$ \Rightarrow

 $\theta = \arccos \frac{1}{2} = \frac{\pi}{3}$

R $\hat{\theta} = 0$ 2a13a R

By symmetry the required area = $2(R_1 + R_2)$

$$R_{1} = \frac{1}{2} \int_{0}^{\frac{\pi}{3}} (1 + \cos \theta)^{2} d\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{3}} (1 + 2\cos \theta + \cos^{2} \theta) d\theta$$

$$R_{1} = \frac{1}{2} \int_{0}^{\frac{\pi}{3}} \left(\frac{3}{2} + 2\cos \theta + \frac{\cos 2\theta}{2}\right) d\theta$$

$$Use \cos 2\theta = 2\cos^{2} \theta - 1.$$

$$= \frac{1}{2} \left[\frac{3}{2}\theta + 2\sin \theta + \frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{3}}$$

$$= \frac{1}{2} \left[\left(\frac{\pi}{2} + 2\sin \frac{\pi}{3} + \frac{1}{4}\sin \frac{2\pi}{3}\right) - (0)\right]$$

$$= \frac{1}{2} \left[\frac{\pi}{2} + \sqrt{3} + \frac{\sqrt{3}}{8}\right] = \frac{\pi}{4} + \frac{9\sqrt{3}}{16}$$

$$R_{2} = \frac{9}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos^{2} \theta d\theta = \frac{9}{4} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (1 + \cos 2\theta) d\theta$$

$$= \frac{9}{4} \left[\theta + \frac{1}{2}\sin 2\theta\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} = \frac{9}{4} \left[\left(\frac{\pi}{2} + 0\right) - \left(\frac{\pi}{3} + \frac{\sqrt{3}}{4}\right)\right]$$

$$= \frac{3\pi}{8} - \frac{9\sqrt{3}}{16}$$

 \therefore Area required = $2\left(\frac{3\pi}{8} + \frac{\pi}{4}\right) = \frac{5\pi}{4}$

Exercise F, Question 4

Question:

Find the polar coordinates of the points on $r^2 = a^2 \sin 2\theta$ where the tangent is perpendicular to the initial line.

Solution:

 $r^{2} = a^{2} \sin 2\theta \quad (\text{must have } 0 \le \theta \le \frac{\pi}{2})$ $r = a\sqrt{\sin 2\theta}$ $x = r \cos \theta = a \cos \theta \sqrt{\sin 2\theta}$ $\frac{dx}{d\theta} = 0 \Rightarrow 0 = -\sin \theta \sqrt{\sin 2\theta} + \frac{1}{2} \cos \theta \frac{1}{\sqrt{\sin 2\theta}} \mathcal{Z} \cos 2\theta$ i.e. $0 = -\sin \theta \times \sin 2\theta + \cos \theta \cos 2\theta$ i.e. $0 = \cos 3\theta$ $\therefore \qquad 3\theta = \frac{\pi}{2}, \frac{3\pi}{2}$ $\therefore \qquad \theta = \frac{\pi}{6}, \frac{\pi}{2}$ So $\left(a\sqrt{\frac{\sqrt{3}}{2}}, \frac{\pi}{6}\right) \text{ and } \left(0, \frac{\pi}{2}\right)$

Exercise F, Question 5

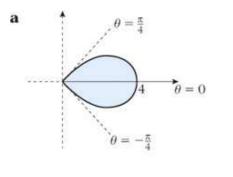
Question:

a Shade the region *C* for which the polar coordinates *r*, θ satisfy

 $r \le 4 \cos 2\theta$ for $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$

b Find the area of *C*.

Solution:



b Area
$$= 2 \times \frac{1}{2} \int_{0}^{\frac{\pi}{4}} 16 \cos^{2} 2\theta \, d\theta$$
$$= \int_{0}^{\frac{\pi}{4}} (8 + 8 \cos 4\theta) \, d\theta$$
$$= \left[8\theta + 2 \sin 4\theta \right]_{0}^{\frac{\pi}{4}}$$
$$= 2\pi + 0 - 0$$
$$= 2\pi$$

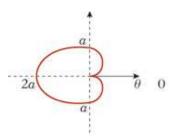
2	1 1 000 20
$2\cos^2\theta = 1$	$1 \pm \cos 2\theta$.

Exercise F, Question 6

Question:

Sketch the curve with polar equation $r = a(1 - \cos \theta)$, where a > 0, stating the polar coordinates of the point on the curve at which *r* has its maximum value.

Solution:



Max *r* is 2*a* at point (2*a*, π)

Exercise F, Question 7

Question:

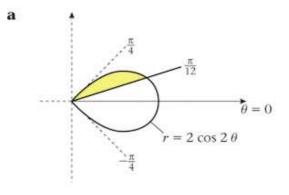
a On the same diagram, sketch the curve C_1 with polar equation

$$r = 2\cos 2\theta, \quad -\frac{\pi}{4} < \theta \le \frac{\pi}{4}$$

and the curve C_2 with polar equation $\theta = \frac{\pi}{12}$.

b Find the area of the smaller region bounded by C_1 and C_2 .

Solution:



b Area =
$$\frac{1}{2} \int_{\frac{\pi}{12}}^{\frac{\pi}{4}} 4\cos^2 2\theta$$

= $\int_{\frac{\pi}{12}}^{\frac{\pi}{4}} (1 + \cos 4\theta) d\theta$
= $\left[\theta + \frac{1}{4}\sin 4\theta\right]_{\frac{\pi}{12}}^{\frac{\pi}{4}}$
= $\left(\frac{\pi}{4} + 0\right) - \left(\frac{\pi}{12} + \frac{1}{4}\sin\frac{\pi}{3}\right)$
= $\frac{\pi}{6} - \frac{1}{4} \times \frac{\sqrt{3}}{2}$
= $\frac{\pi}{6} - \frac{\sqrt{3}}{8}$

 $\cos 4\theta = 2\cos^2 2\theta - 1$

Exercise F, Question 8

Question:

a Sketch on the same diagram the circle with polar equation $r = 4 \cos \theta$ and the line with polar equation $r = 2 \sec \theta$.

2

2

 $x \stackrel{!}{=} 2$

 $r = 4 \cos \theta$

 $\dot{\theta} = 0$

4

b State polar coordinates for their points of intersection.

Solution:

a $r = 2 \sec \theta$ $r \cos \theta = 2$ x = 2

b x = 2 is a diameter

$$r = \sqrt{2^2 + 2^2} = 2\sqrt{2}$$

So polar coordinates are

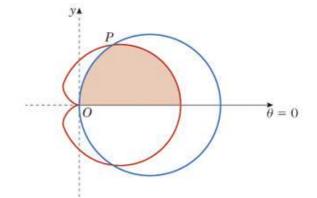
$$\left(2\sqrt{2},\frac{\pi}{4}\right)$$
 $\left(2\sqrt{2},-\frac{\pi}{4}\right)$

Exercise F, Question 9

Question:

The diagram shows a sketch of the curves with polar equations

- $r = a(1 + \cos \theta)$ and $r = 3a \cos \theta$, a > 0
- **a** Find the polar coordinates of the point of intersection *P* of the two curves.
- **b** Find the area, shaded in the figure, bounded by the two curves and by the initial line $\theta = 0$, giving your answer in terms of *a* and π .



Solution:

a
$$a(1 + \cos \theta) = 3a \cos \theta$$

 $1 = 2 \cos \theta$
 $\cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$
So *P* is $\left(\frac{3}{2}a, \frac{\pi}{3}\right)$
b Area $= \frac{a^2}{2} \int_0^{\frac{\pi}{3}} \left(\frac{3}{2} + 2\cos \theta + \frac{\cos 2\theta}{2}\right) d\theta + \frac{9}{2} a^2 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos^2 \theta d\theta$
 $= \frac{a^2}{2} \left[\frac{3}{2}\theta + 2\sin \theta + \frac{1}{4}\sin 2\theta\right]_0^{\frac{\pi}{3}} + \frac{9}{4} a^2 \left[\theta + \frac{1}{2}\sin 2\theta\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$
 $= \frac{a^2}{2} \left[\frac{\pi}{2} + \sqrt{3} + \frac{\sqrt{3}}{8}\right] + \frac{9}{4} a^2 \left[\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right]$
 $= \frac{5\pi}{8} a^2$

Exercise F, Question 10

Question:

Obtain a Cartesian equation for the curve with polar equation

a $r^2 = \sec 2\theta$, **b** $r^2 = \csc 2\theta$.

Solution:

a

$$r^{2} = \sec 2\theta$$

$$r^{2} \cos 2\theta = 1$$

$$r^{2}(2 \cos^{2} \theta - 1) = 1$$

$$2r^{2} \cos^{2} \theta = 1 + r^{2}$$

$$2x^{2} = 1 + x^{2} + y^{2}$$

$$\therefore \qquad y^{2} = x^{2} - 1$$

b

$$\Rightarrow r^{2} \sin 2\theta = 1$$

$$\Rightarrow 2r \sin \theta r \cos \theta = 1$$

$$\Rightarrow 2xy = 1$$

$$y = \frac{1}{2x}$$

 $r^2 = \csc 2\theta$