Quadratic Equations Exercise A, Question 1

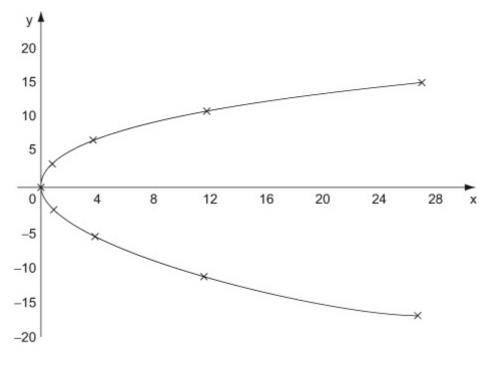
Question:

A curve is given by the parametric equations $x = 2t^2$, y = 4t. $t \in \mathbb{R}$. Copy and complete the following table and draw a graph of the curve for $-4 \le t \le 4$.

t	-4	-3	-2	-1	-0.5	0	0.5	1	2	3	4
$x = 2t^2$	32					0	0.5				32
y=4t	-16						2				16

Solution:

					-0.5						
$x = 2t^2$	32	18	8	2	0.5	0	0.5	2	8	18	32
y = 4t	-16	-12	-8	-4	-2	0	2	4	8	12	16



Quadratic Equations Exercise A, Question 2

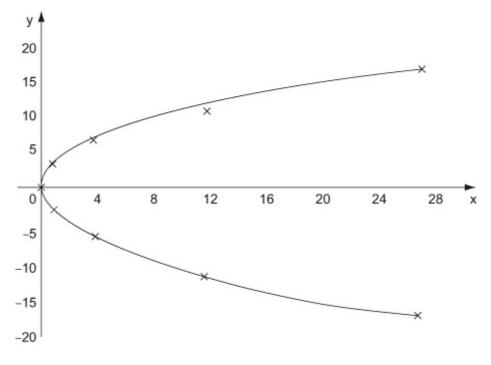
Question:

A curve is given by the parametric equations $x = 3t^2$, y = 6t. $t \in \mathbb{R}$. Copy and complete the following table and draw a graph of the curve for $-3 \le t \le 3$.

t	-3	-2	-1	-0.5	0	0.5	1	2	3
$x = 3t^2$					0				
y = 6t					0				

Solution:

				-0.5					
$x = 3t^2$	27	12	3	0.75	0	0.75	3	12	27
y = 6t	-18	-12	-6	-3	0	3	6	12	18



Quadratic Equations Exercise A, Question 3

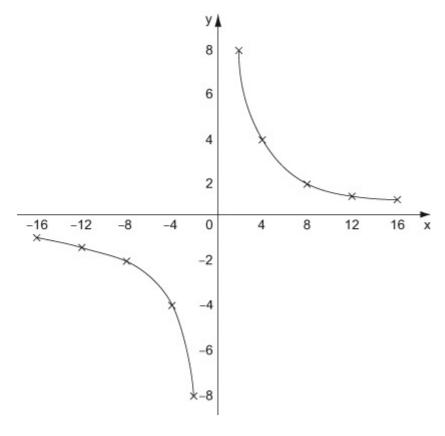
Question:

A curve is given by the parametric equations x = 4t, $y = \frac{4}{t}$. $t \in \mathbb{R}$, $t \ne 0$. Copy and complete the following table and draw a graph of the curve for $-4 \le t \le 4$.

t	-4	-3	-2	-1	-0.5	0.5	1	2	3	4
x = 4t	-16				-2					
$y = \frac{4}{t}$	-1				-8					

Solution:

	t	-4	-3	-2	-1	-0.5	0.5	1	2	3	4
I	x = 4t	-16	-12	-8	-4	-2	2	4	8	12	16
	$y = \frac{4}{t}$	-1	$-\frac{4}{3}$	-2	-4	-8	8	4	2	4/3	1



Quadratic Equations Exercise A, Question 4

Question:

Find the Cartesian equation of the curves given by these parametric equations.

a
$$x = 5t^2$$
, $y = 10t$

b
$$x = \frac{1}{2}t^2$$
, $y = t$

$$\mathbf{c} \ x = 50t^2, \ y = 100t$$

d
$$x = \frac{1}{5}t^2$$
, $y = \frac{2}{5}t$

e
$$x = \frac{5}{2}t^2$$
, $y = 5t$

f
$$x = \sqrt{3}t^2$$
, $y = 2\sqrt{3}t$

g
$$x = 4t$$
, $y = 2t^2$

h
$$x = 6t$$
, $y = 3t^2$

Solution:

$$\mathbf{a} \qquad y = 10t$$

So
$$t = \frac{y}{10}$$
 (1)

$$x = 5t^2$$
 (2)

Substitute (1) into (2):

$$x = 5\left(\frac{y}{10}\right)^2$$

So
$$x = \frac{5y^2}{100}$$
 simplifies to $x = \frac{y^2}{20}$

Hence, the Cartesian equation is $y^2 = 20x$.

$$\mathbf{b} \quad y = t \quad \mathbf{(1)}$$

$$x = \frac{1}{2}t^2$$
 (2)

Substitute (1) into (2):

$$x = \frac{1}{2}y^2$$

Hence, the Cartesian equation is $y^2 = 2x$.

 $\mathbf{c} \qquad y = 100t$

So
$$t = \frac{y}{100}$$
 (1)

$$x = 50t^2$$
 (2)

Substitute (1) into (2):

$$x = 50 \left(\frac{y}{100}\right)^2$$

So
$$x = \frac{50y^2}{10000}$$
 simplifies to $x = \frac{y^2}{200}$

Hence, the Cartesian equation is $y^2 = 200x$.

$$\mathbf{d} \qquad y = \frac{2}{5}t$$

So
$$t = \frac{5y}{2}$$
 (1)

$$x = \frac{1}{5}t^2$$
 (2)

Substitute (1) into (2):

$$x = \frac{1}{5} \left(\frac{5y}{2}\right)^2$$

So
$$x = \frac{25y^2}{20}$$
 simplifies to $x = \frac{5y^2}{4}$

Hence, the Cartesian equation is $y^2 = \frac{4}{5}x$.

$$\mathbf{e} \qquad y = 5t$$

So
$$t = \frac{y}{5}$$
 (1)

$$x = \frac{5}{2}t^2$$
 (2)

Substitute (1) into (2):

$$x = \frac{5}{2} \left(\frac{y}{5}\right)^2$$

So
$$x = \frac{5y^2}{50}$$
 simplifies to $x = \frac{y^2}{10}$

Hence, the Cartesian equation is $y^2 = 10x$.

$$\mathbf{f} \qquad y = 2\sqrt{3}\,t$$

So
$$t = \frac{y}{2\sqrt{3}}$$
 (1)

$$x = \sqrt{3}t^2$$
 (2)

Substitute (1) into (2):

$$x = \sqrt{3} \left(\frac{y}{2\sqrt{3}} \right)^2$$

So
$$x = \frac{\sqrt{3}y^2}{12}$$
 gives $y = \frac{12x}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$

Hence, the Cartesian equation is $y^2 = 4\sqrt{3}x$.

$$\mathbf{g}$$
 $x = 4t$

So
$$t = \frac{x}{4}$$
 (1)

$$y = 2t^2$$
 (2)

Substitute (1) into (2):

$$y = 2\left(\frac{x}{4}\right)^2$$

So
$$y = \frac{2x^2}{16}$$
 simplifies to $y = \frac{x^2}{8}$

Hence, the Cartesian equation is $x^2 = 8y$.

$$\mathbf{h} \qquad x = 6t$$

So
$$t = \frac{x}{6}$$
 (1)

$$y = 3t^2$$
 (2)

Substitute (1) into (2):

$$y = 3\left(\frac{x}{6}\right)^2$$

So
$$y = \frac{3x^2}{36}$$
 simplifies to $y = \frac{x^2}{12}$

Hence, the Cartesian equation is $x^2 = 12y$.

Quadratic Equations Exercise A, Question 5

Question:

Find the Cartesian equation of the curves given by these parametric equations.

a
$$x = t$$
, $y = \frac{1}{t}$, $t \neq 0$

b
$$x = 7t$$
, $y = \frac{7}{t}$, $t \neq 0$

c
$$x = 3\sqrt{5}t$$
, $y = \frac{3\sqrt{5}}{t}$, $t \neq 0$

d
$$x = \frac{t}{5}, y = \frac{1}{5t}, t \neq 0$$

Solution:

$$\mathbf{a}$$
 $xy = t \times \left(\frac{1}{t}\right)$

$$xy = \frac{t}{t}$$

Hence, the Cartesian equation is xy = 1.

b
$$xy = 7t \times \left(\frac{7}{t}\right)$$

$$xy = \frac{49t}{t}$$

Hence, the Cartesian equation is xy = 49.

$$\mathbf{c} \quad xy = 3\sqrt{5} \, t \times \left(\frac{3\sqrt{5}}{t}\right)$$

$$xy = \frac{9(5)t}{t}$$

Hence, the Cartesian equation is xy = 45.

$$\mathbf{d} \quad xy = \frac{t}{5} \times \left(\frac{1}{5t}\right)$$

$$xy = \frac{t}{25t}$$

Hence, the Cartesian equation is $xy = \frac{1}{25}$.

Quadratic Equations Exercise A, Question 6

Question:

A curve has parametric equations x = 3t, $y = \frac{3}{t}$, $t \in \mathbb{R}$, $t \neq 0$.

a Find the Cartesian equation of the curve.

b Hence sketch this curve.

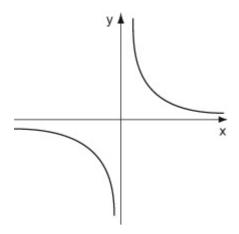
Solution:

$$\mathbf{a} \quad xy = 3t \times \left(\frac{3}{t}\right)$$

$$xy = \frac{9t}{t}$$

Hence, the Cartesian equation is xy = 9.

b



Quadratic Equations Exercise A, Question 7

Question:

A curve has parametric equations $x = \sqrt{2}t$, $y = \frac{\sqrt{2}}{t}$, $t \in \mathbb{R}$, $t \neq 0$.

a Find the Cartesian equation of the curve.

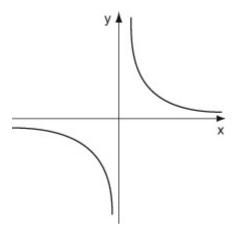
b Hence sketch this curve.

Solution:

$$\mathbf{a} \quad xy = \sqrt{2} t \times \left(\frac{\sqrt{2}}{t}\right)$$
$$xy = \frac{2t}{t}$$

Hence, the Cartesian equation is xy = 2.

b



Quadratic Equations Exercise B, Question 1

Question:

Find an equation of the parabola with

a focus (5, 0) and directrix x + 5 = 0,

b focus (8, 0) and directrix x + 8 = 0,

c focus (1, 0) and directrix x = -1,

d focus $\left(\frac{3}{2}, 0\right)$ and directrix $x = -\frac{3}{2}$,

e focus $\left(\frac{\sqrt{3}}{2}, 0\right)$ and directrix $x + \frac{\sqrt{3}}{2} = 0$.

Solution:

The focus and directrix of a parabola with equation $y^2 = 4ax$, are (a, 0) and x + a = 0 respectively.

a focus (5, 0) and directrix x + 5 = 0.

So a = 5 and $y^2 = 4(5)x$.

Hence parabola has equation $v^2 = 20x$.

b focus (8, 0) and directrix x + 8 = 0.

So a = 8 and $y^2 = 4(8)x$.

Hence parabola has equation $y^2 = 32x$.

c focus (1, 0) and directrix x = -1 giving x + 1 = 0.

So a = 1 and $y^2 = 4(1)x$.

Hence parabola has equation $y^2 = 4x$.

d focus $\left(\frac{3}{2}, 0\right)$ and directrix $x = -\frac{3}{2}$ giving $x + \frac{3}{2} = 0$.

So $a = \frac{3}{2}$ and $y^2 = 4(\frac{3}{2})x$.

Hence parabola has equation $y^2 = 6x$.

e focus $\left(\frac{\sqrt{3}}{2}, 0\right)$ and directrix $x + \frac{\sqrt{3}}{2} = 0$.

So $a = \frac{\sqrt{3}}{2}$ and $y^2 = 4(\frac{\sqrt{3}}{2})x$.

Hence parabola has equation $y^2 = 2\sqrt{3}x$.

Quadratic Equations Exercise B, Question 2

Question:

Find the coordinates of the focus, and an equation for the directrix of a parabola with these equations.

a
$$y^2 = 12x$$

b
$$y^2 = 20x$$

$$\mathbf{c} \ \ \mathbf{v}^2 = 10x$$

d
$$y^2 = 4\sqrt{3}x$$

e
$$v^2 = \sqrt{2}x$$

$$\mathbf{f} \ v^2 = 5\sqrt{2}x$$

Solution:

The focus and directrix of a parabola with equation $y^2 = 4ax$, are (a, 0) and x + a = 0 respectively.

a
$$y^2 = 12x$$
. So $4a = 12$, gives $a = \frac{12}{4} = 3$.

So the focus has coordinates (3, 0) and the directrix has equation x + 3 = 0.

b
$$y^2 = 20x$$
. So $4a = 20$, gives $a = \frac{20}{4} = 5$.

So the focus has coordinates (5, 0) and the directrix has equation x + 5 = 0.

$$\mathbf{c} \ y^2 = 10x$$
. So $4a = 10$, gives $a = \frac{10}{4} = \frac{5}{2}$.

So the focus has coordinates $\left(\frac{5}{2}, 0\right)$ and the directrix has equation $x + \frac{5}{2} = 0$.

d
$$y^2 = 4\sqrt{3}x$$
. So $4a = 4\sqrt{3}$, gives $a = \frac{4\sqrt{3}}{4} = \sqrt{3}$.

So the focus has coordinates $(\sqrt{3}, 0)$ and the directrix has equation $x + \sqrt{3} = 0$.

e
$$y^2 = \sqrt{2}x$$
. So $4a = \sqrt{2}$, gives $a = \frac{\sqrt{2}}{4}$.

So the focus has coordinates $\left(\frac{\sqrt{2}}{4}, 0\right)$ and the directrix has equation $x + \frac{\sqrt{2}}{4} = 0$.

f
$$y^2 = 5\sqrt{2}x$$
. So $4a = 5\sqrt{2}$, gives $a = \frac{5\sqrt{2}}{4}$.

So the focus has coordinates $\left(\frac{5\sqrt{2}}{4}, 0\right)$ and the directrix has equation $x + \frac{5\sqrt{2}}{4} = 0$.

Solutionbank FP1

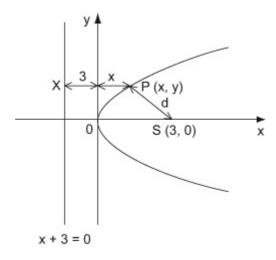
Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise B, Question 3

Question:

A point P(x, y) obeys a rule such that the distance of P to the point (3, 0) is the same as the distance of P to the straight line x + 3 = 0. Prove that the locus of P has an equation of the form $y^2 = 4ax$, stating the value of the constant a.

Solution:



From sketch the locus satisfies SP = XP.

Therefore, $SP^2 = XP^2$.

So,
$$(x-3)^2 + (y-0)^2 = (x-3)^2$$
.

$$x^{2} - 6x + 9 + y^{2} = x^{2} + 6x + 9$$
$$-6x + y^{2} = 6x$$

which simplifies to $y^2 = 12x$.

So, the locus of *P* has an equation of the form $y^2 = 4ax$, where a = 3.

© Pearson Education Ltd 2008

The (shortest) distance of P to the line x + 3 = 0 is the distance XP.

The distance SP is the same as the distance XP.

The line XP is horizontal and has distance XP = x + 3.

The locus of *P* is the curve shown.

This means the distance SP is the same as the distance XP.

Use $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$ on $SP^2 = XP^2$, where S(3, 0), P(x, y), and X(-3, y).

This is in the form $y^2 = 4ax$.

So 4a = 12, gives $a = \frac{12}{4} = 3$.

Solutionbank FP1

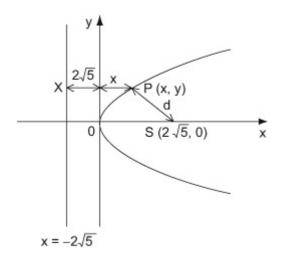
Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise B, Question 4

Question:

A point P(x, y) obeys a rule such that the distance of P to the point $(2\sqrt{5}, 0)$ is the same as the distance of P to the straight line $x = -2\sqrt{5}$. Prove that the locus of P has an equation of the form $y^2 = 4ax$, stating the value of the constant a.

Solution:



From sketch the locus satisfies SP = XP.

Therefore, $SP^2 = XP^2$.

So,
$$(x-2\sqrt{5})^2 + (y-0)^2 = (x-2\sqrt{5})^2$$
.

$$x^{2} - 4\sqrt{5}x + 20 + y^{2} = x^{2} + 4\sqrt{5}x + 20$$
$$-4\sqrt{5}x + y^{2} = 4\sqrt{5}x$$

which simplifies to $y^2 = 8\sqrt{5}x$.

So, the locus of *P* has an equation of the form $y^2 = 4ax$, where $a = 2\sqrt{5}$.

© Pearson Education Ltd 2008

The (shortest) distance of *P* to the line $x = -2\sqrt{5}$ or $x + 2\sqrt{5} = 0$ is the distance *XP*.

The distance SP is the same as the distance XP.

The line *XP* is horizontal and has distance $XP = x + 2\sqrt{5}$.

The locus of *P* is the curve shown.

This means the distance *SP* is the same as the distance *XP*.

Use
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$
 on $SP^2 = XP^2$, where $S(2\sqrt{5}, 0)$, $P(x, y)$, and $X(-2\sqrt{5}, y)$.

This is in the form $y^2 = 4ax$.

So
$$4a = 8\sqrt{5}$$
, gives $a = \frac{8\sqrt{5}}{4} = 2\sqrt{5}$.

Quadratic Equations Exercise B, Question 5

Question:

A point P(x, y) obeys a rule such that the distance of P to the point (0, 2) is the same as the distance of P to the straight line y = -2.

a Prove that the locus of P has an equation of the form $y = kx^2$, stating the value of the constant k.

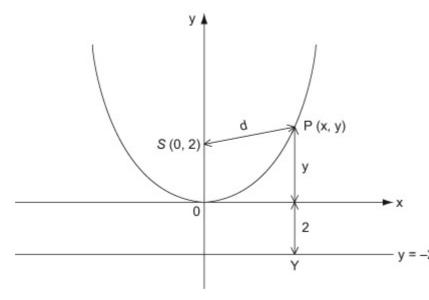
Given that the locus of P is a parabola,

b state the coordinates of the focus of P, and an equation of the directrix to P,

c sketch the locus of *P* with its focus and its directrix.

Solution:

a



The (shortest) distance of P to the line y = -2 is the distance YP.

The distance *SP* is the same as the distance *YP*.

The line *YP* is vertical and has distance YP = y + 2.

The locus of *P* is the curve shown.

From sketch the locus satisfies SP = YP.

Therefore,
$$SP^2 = YP^2$$
.
So, $(x-0)^2 + (y-2)^2 = (y--2)^2$.

$$x^{2} + y^{2} - 4y + 4 = y^{2} + 4y + 4$$
$$x^{2} - 4y = 4y$$

which simplifies to $x^2 = 8y$ and then $y = \frac{1}{8}x^2$.

So, the locus of P has an equation of the form $y = \frac{1}{8}x^2$, where

This means the distance *SP* is the same as the distance *YP*.

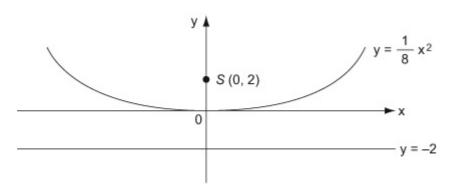
Use
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$
 on $SP^2 = YP^2$, where $S(0, 2)$, $P(x, y)$, and $Y(x, -2)$.

$$k = \frac{1}{8}.$$

b The focus and directrix of a parabola with equation $y^2 = 4ax$, are (a, 0) and x + a = 0 respectively. Therefore it follows that the focus and directrix of a parabola with equation $x^2 = 4ay$, are (0, a) and y + a = 0 respectively.

So the focus has coordinates (0, 2) and the directrix has equation $x^2 = 8y$ is in the form $x^2 = 4ay$. y + 2 = 0. So 4a = 8, gives $a = \frac{8}{4} = 2$.

 \mathbf{c}



Quadratic Equations Exercise C, Question 1

Question:

The line y = 2x - 3 meets the parabola $y^2 = 3x$ at the points P and Q.

Find the coordinates of P and Q.

Solution:

Line:
$$y = 2x - 3$$
 (1)

Curve:
$$y^2 = 3x$$
 (2)

Substituting (1) into (2) gives

$$(2x-3)^2 = 3x$$

$$(2x-3)(2x-3) = 3x$$

$$4x^2 - 12x + 9 = 3x$$

$$4x^2 - 15x + 9 = 0$$

$$(x-3)(4x-3) = 0$$

$$x = 3, \frac{3}{4}$$

When
$$x = 3$$
, $y = 2(3) - 3 = 3$

When
$$x = \frac{3}{4}$$
, $y = 2\left(\frac{3}{4}\right) - 3 = -\frac{3}{2}$

Hence the coordinates of *P* and *Q* are (3, 3) and $\left(\frac{3}{4}, -\frac{3}{2}\right)$.

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise C, Question 2

Question:

The line y = x + 6 meets the parabola $y^2 = 32x$ at the points A and B. Find the exact length AB giving your answer as a surd in its simplest form.

Solution:

Line:
$$y = x + 6$$
 (1)

Curve:
$$y^2 = 32x$$
 (2)

Substituting (1) into (2) gives

$$(x+6)^2 = 32x$$

$$(x+6)(x+6) = 32x$$

$$x^2 + 12x + 36 = 32x$$

$$x^2 - 20x + 36 = 0$$

$$(x-2)(x-18) = 0$$

$$x = 2, 18$$

When
$$x = 2$$
, $y = 2 + 6 = 8$.

When
$$x = 18$$
, $y = 18 + 6 = 24$.

Hence the coordinates of A and B are (2, 8) and (18, 24).

$$AB = \sqrt{(18-2)^2 + (24-8)^2} \text{ Use d} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

$$= \sqrt{16^2 + 16^2}$$

$$= \sqrt{2(16)^2}$$

$$= 16\sqrt{2}$$

Hence the exact length AB is $16\sqrt{2}$.

Quadratic Equations Exercise C, Question 3

Question:

The line y = x - 20 meets the parabola $y^2 = 10x$ at the points A and B. Find the coordinates of A and B. The mid-point of AB is the point M. Find the coordinates of M.

Solution:

Line:
$$y = x - 20$$
 (1)

Curve:
$$y^2 = 10x$$
 (2)

Substituting (1) into (2) gives

$$(x-20)^{2} = 10x$$

$$(x-20)(x-20) = 10x$$

$$x^{2}-40x+400 = 10x$$

$$x^{2}-50x+400 = 0$$

$$(x-10)(x-40) = 0$$

$$x = 10,40$$

When x = 10, y = 10 - 20 = -10.

When
$$x = 40$$
, $y = 40 - 20 = 20$.

Hence the coordinates of A and B are (10, -10) and (40, 20).

The midpoint of *A* and *B* is
$$\left(\frac{10+40}{2}, \frac{-10+20}{2}\right) = (25, 5)$$
. Use $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

Hence the coordinates of M are (25, 5).

Quadratic Equations Exercise C, Question 4

Question:

The parabola C has parametric equations $x = 6t^2$, y = 12t. The focus to C is at the point S.

a Find a Cartesian equation of *C*.

b State the coordinates of *S* and the equation of the directrix to *C*.

c Sketch the graph of *C*.

The points P and Q are both at a distance 9 units away from the directrix of the parabola.

d State the distance PS.

e Find the exact length *PQ*, giving your answer as a surd in its simplest form.

f Find the area of the triangle *PQS*, giving your answer in the form $k\sqrt{2}$, where k is an integer.

Solution:

$$\mathbf{a} \qquad \qquad y = 12t$$

So
$$t = \frac{y}{12}$$
 (1)

$$x = 6t^2 \qquad (2)$$

Substitute (1) into (2):

$$x = 6\left(\frac{y}{12}\right)^2$$

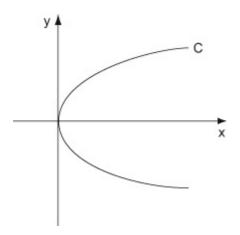
So
$$x = \frac{6y^2}{144}$$
 simplifies to $x = \frac{y^2}{24}$

Hence, the Cartesian equation is $y^2 = 24x$.

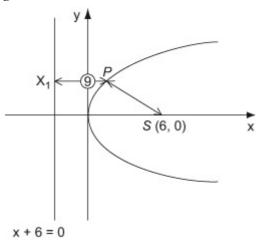
b
$$y^2 = 24x$$
. So $4a = 24$, gives $a = \frac{24}{4} = 6$.

So the focus S, has coordinates (6, 0) and the directrix has equation x + 6 = 0.

c



d



The (shortest) distance of *P* to the line x + 6 = 0 is the distance X_1P .

Therefore $X_1P = 9$.

The distance PS is the same as the distance X_1P , by the focus-directrix property.

Hence the distance PS = 9.

e Using diagram in (d), the x-coordinate of P and Q is x = 9 - 6 = 3.

When
$$x = 3$$
, $y^2 = 24(3) = 72$.

Hence
$$y = \pm \sqrt{72}$$

= $\pm \sqrt{36} \sqrt{2}$
= $\pm 6\sqrt{2}$

So the coordinates are of P and Q are $(3, 6\sqrt{2})$ and $(3, -6\sqrt{2})$.

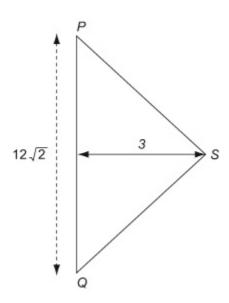
As P and Q are vertically above each other then

$$PQ = 6\sqrt{2} - -6\sqrt{2}$$
$$= 12\sqrt{2}.$$

Hence, the distance PQ is $12\sqrt{2}$.

f Drawing a diagram of the triangle *PQS* gives:

The *x*-coordinate of *P* and *Q* is 3 and the *x*-coordinate of *S* is 6.



Hence the height of the triangle is height = 6 - 3 = 3.

The length of the base is $12\sqrt{2}$.

Area =
$$\frac{1}{2}(12\sqrt{2})(3)$$

= $\frac{1}{2}(36\sqrt{2})$
= $18\sqrt{2}$.

Therefore the area of the triangle is $18\sqrt{2}$, where k = 18.

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise C, Question 5

Question:

The parabola C has equation $y^2 = 4ax$, where a is a constant. The point $\left(\frac{5}{4}t^2, \frac{5}{2}t\right)$ is a general point on C.

a Find a Cartesian equation of *C*.

The point P lies on C with y-coordinate 5.

b Find the *x*-coordinate of *P*.

The point Q lies on the directrix of C where y = 3. The line l passes through the points P and Q.

c Find the coordinates of Q.

d Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

Solution:

a
$$P\left(\frac{5}{4}t^2, \frac{5}{2}t\right)$$
. Substituting $x = \frac{5}{4}t^2$ and $y = \frac{5}{2}t$ into $y^2 = 4ax$ gives,

$$\left(\frac{5}{2}t\right)^2 = 4a\left(\frac{5}{4}t^2\right) \Rightarrow \frac{25t^2}{4} = 5at^2 \Rightarrow \frac{25}{4} = 5a \Rightarrow \frac{5}{4} = a$$

When
$$a = \frac{5}{4}$$
, $y^2 = 4(\frac{5}{4})x \Rightarrow y^2 = 5x$

The Cartesian equation of C is $y^2 = 5x$.

b When
$$y = 5$$
, $(5)^2 = 5x \Rightarrow \frac{25}{5} = x \Rightarrow x = 5$.

The *x*-coordinate of *P* is 5.

c As
$$a = \frac{5}{4}$$
, the equation of the directrix of C is $x + \frac{5}{4} = 0$ or $x = -\frac{5}{4}$.

Therefore the coordinates of Q are $\left(-\frac{5}{4}, 3\right)$.

d The coordinates of *P* and *Q* are (5, 5) and $\left(-\frac{5}{4}, 3\right)$.

$$m_l = m_{PQ} = \frac{3-5}{-\frac{5}{4}-5} = \frac{-2}{-\frac{25}{4}} = \frac{8}{25}$$

$$l: y - 5 = \frac{8}{25}(x - 5)$$

$$l: 25y - 125 = 8(x - 5)$$

$$l: 25y - 125 = 8x - 40$$

$$l: 0 = 8x - 25y - 40 + 125$$

$$l: 0 = 8x - 25y + 85$$

An equation for l is 8x - 25y + 85 = 0.

Quadratic Equations Exercise C, Question 6

Question:

A parabola C has equation $y^2 = 4x$. The point S is the focus to C.

a Find the coordinates of *S*.

The point *P* with *y*-coordinate 4 lies on *C*.

b Find the *x*-coordinate of *P*.

The line l passes through S and P.

c Find an equation for *l*, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

The line l meets C again at the point Q.

d Find the coordinates of Q.

e Find the distance of the directrix of C to the point Q.

Solution:

a
$$y^2 = 4x$$
. So $4a = 4$, gives $a = \frac{4}{4} = 1$.

So the focus S, has coordinates (1, 0).

Also note that the directrix has equation x + 1 = 0.

b Substituting y = 4 into $y^2 = 4x$ gives:

$$16 = 4x \Rightarrow x = \frac{16}{4} = 4.$$

The *x*-coordinate of *P* is 4.

c The line l goes through S(1,0) and P(4,4).

Hence gradient of l, $m_l = \frac{4-0}{4-1} = \frac{4}{3}$

Hence,
$$y-0 = \frac{4}{3}(x-1)$$

 $3y = 4(x-1)$
 $3y = 4x-4$
 $0 = 4x-3y-4$

The line *l* has equation 4x - 3y - 4 = 0.

d Line
$$l: 4x - 3y - 4 = 0$$
 (1)

Curve :
$$y^2 = 4x$$
 (2)

Substituting (2) into (1) gives

$$y^{2} - 3y - 4 = 0$$
$$(y - 4)(y + 1) = 0$$
$$y = 4, -1$$

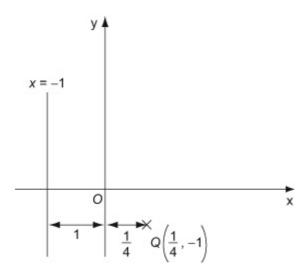
At P, it is already known that y = 4. So at Q, y = -1.

Substituting y = -1 into $y^2 = 4x$ gives

$$(-1)^2 = 4x \Rightarrow x = \frac{1}{4}.$$

Hence the coordinates of Q are $\left(\frac{1}{4}, -1\right)$.

e The directrix of C has equation x + 1 = 0 or x = -1. Q has coordinates $\left(\frac{1}{4}, -1\right)$.



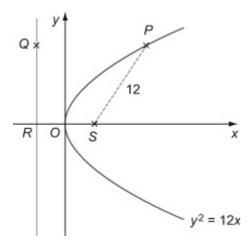
From the diagram, distance = $1 + \frac{1}{4} = \frac{5}{4}$.

Therefore the distance of the directrix of C to the point Q is $\frac{5}{4}$.

Quadratic Equations Exercise C, Question 7

Question:

The diagram shows the point P which lies on the parabola C with equation $y^2 = 12x$.



The point S is the focus of C. The points Q and R lie on the directrix to C. The line segment QP is parallel to the line segment RS as shown in the diagram. The distance of PS is 12 units.

a Find the coordinates of *R* and *S*.

b Hence find the exact coordinates of P and Q.

c Find the area of the quadrilateral *PQRS*, giving your answer in the form $k\sqrt{3}$, where k is an integer.

Solution:

a
$$y^2 = 12x$$
. So $4a = 12$, gives $a = \frac{12}{4} = 3$.

Therefore the focus S has coordinates (3, 0) and an equation of the directrix of C is x + 3 = 0 or x = -3. The coordinates of R are (-3, 0) as R lies on the x-axis.

b The directrix has equation x = -3. The (shortest) distance of P to the directrix is the distance PQ. The distance SP = 12. The focus-directrix property implies that SP = PQ = 12.

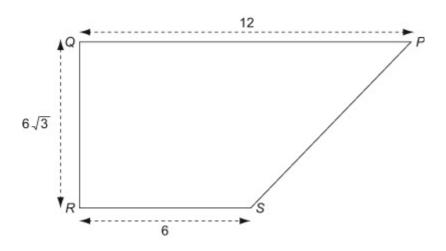
Therefore the *x*-coordinate of *P* is x = 12 - 3 = 9.

As *P* lies on *C*, when x = 9, $y^2 = 12(9) \Rightarrow y^2 = 108$

As
$$y > 0$$
, $y = \sqrt{108} = \sqrt{36} \sqrt{3} = 6\sqrt{3} \Rightarrow P(9, 6\sqrt{3})$

Hence the exact coordinates of P are $(9, 6\sqrt{3})$ and the coordinates of Q are $(-3, 6\sqrt{3})$.

 \mathbf{c}



Area(PQRS) =
$$\frac{1}{2}(6+12)6\sqrt{3}$$

= $\frac{1}{2}(18)(6\sqrt{3})$
= $(9)(6\sqrt{3})$
= $54\sqrt{3}$

The area of the quadrilateral *PQRS* is $54\sqrt{3}$ and k = 54.

Quadratic Equations Exercise C, Question 8

Question:

The points P(16, 8) and Q(4, b), where b < 0 lie on the parabola C with equation $y^2 = 4ax$.

a Find the values of a and b.

P and Q also lie on the line l. The mid-point of PQ is the point R.

b Find an equation of l, giving your answer in the form y = mx + c, where m and c are constants to be determined.

c Find the coordinates of *R*.

The line n is perpendicular to l and passes through R.

d Find an equation of n, giving your answer in the form y = mx + c, where m and c are constants to be determined.

The line n meets the parabola C at two points.

e Show that the *x*-coordinates of these two points can be written in the form $x = \lambda \pm \mu \sqrt{13}$, where λ and μ are integers to be determined.

Solution:

a P(16, 8). Substituting x = 16 and y = 8 into $y^2 = 4ax$ gives,

$$(8)^2 = 4a(16) \Rightarrow 64 = 64a \Rightarrow a = \frac{64}{64} = 1.$$

Q(4, b). Substituting x = 4, y = b and a = 1 into $y^2 = 4ax$ gives,

$$b^2 = 4(1)(4) = 16 \Rightarrow b = \pm \sqrt{16} \Rightarrow b = \pm 4$$
. As $b < 0$, $b = -4$.

Hence, a = 1, b = -4.

b The coordinates of P and Q are (16, 8) and (4, -4).

$$m_l = m_{PQ} = \frac{-4 - 8}{4 - 16} = \frac{-12}{-12} = 1$$

$$l: y - 8 = 1(x - 16)$$

$$l: y = x - 8$$

l has equation y = x - 8.

c *R* has coordinates $\left(\frac{16+4}{2}, \frac{8+-4}{2}\right) = (10, 2)$.

d As *n* is perpendicular to l, $m_n = -1$

$$n: y-2=-1(x-10)$$

$$n: y - 2 = -x + 10$$

$$n: y = -x + 12$$

n has equation y = -x + 12.

e Line
$$n: y = -x + 12$$
 (1)

Parabola *C* :
$$y^2 = 4x$$
 (2)

Substituting (1) into (2) gives

$$(-x+12)^{2} = 4x$$

$$x^{2} - 12x - 12x + 144 = 4x$$

$$x^{2} - 28x + 144 = 0$$

$$(x-14)^{2} - 196 + 144 = 0$$

$$(x-14)^{2} - 52 = 0$$

$$(x-14)^{2} = 52$$

$$x - 14 = \pm\sqrt{52}$$

$$x - 14 = \pm\sqrt{13}$$

$$x - 14 = \pm2\sqrt{13}$$

$$x = 14 \pm 2\sqrt{13}$$

The x coordinates are $x = 14 \pm 2\sqrt{13}$.

Quadratic Equations Exercise D, Question 1

Question:

Find the equation of the tangent to the curve

- **a** $y^2 = 4x$ at the point (16, 8)
- **b** $y^2 = 8x$ at the point (4, $4\sqrt{2}$)
- $c_{xy} = 25$ at the point (5, 5)
- **d** xy = 4 at the point where $x = \frac{1}{2}$
- **e** $y^2 = 7x$ at the point (7, -7)
- **f** xy = 16 at the point where $x = 2\sqrt{2}$.

Give your answers in the form ax + by + c = 0.

Solution:

a As y > 0 in the coordinates (16, 8), then

$$y^2 = 4x \Rightarrow y = \sqrt{4x} = \sqrt{4}\sqrt{x} = 2x^{\frac{1}{2}}$$

So
$$y = 2x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 2\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = x^{-\frac{1}{2}}$$

So,
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{x}}$$

At (16, 8),
$$m_T = \frac{dy}{dx} = \frac{1}{\sqrt{16}} = \frac{1}{4}$$
.

T:
$$y - 8 = \frac{1}{4}(x - 16)$$

T:
$$4y - 32 = x - 16$$

T:
$$0 = x - 4y - 16 + 32$$

T:
$$x - 4y + 16 = 0$$

Therefore, the equation of the tangent is x - 4y + 16 = 0.

b As y > 0 in the coordinates $(4, 4\sqrt{2})$, then

$$y^2 = 8x \Rightarrow y = \sqrt{8x} = \sqrt{8}\sqrt{x} = \sqrt{4}\sqrt{2}\sqrt{x} = 2\sqrt{2}x^{\frac{1}{2}}$$

So
$$y = 2\sqrt{2}x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 2\sqrt{2}\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = \sqrt{2}x^{-\frac{1}{2}}$$

So,
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{2}}{\sqrt{x}}$$

At
$$(4, 4\sqrt{2})$$
, $m_T = \frac{dy}{dx} = \frac{\sqrt{2}}{\sqrt{4}} = \frac{\sqrt{2}}{2}$.

T:
$$y - 4\sqrt{2} = \frac{\sqrt{2}}{2}(x - 4)$$

T:
$$2y - 8\sqrt{2} = \sqrt{2}(x-4)$$

T:
$$2y - 8\sqrt{2} = \sqrt{2}x - 4\sqrt{2}$$

T:
$$0 = \sqrt{2}x - 2y - 4\sqrt{2} + 8\sqrt{2}$$

T:
$$\sqrt{2}x - 2y + 4\sqrt{2} = 0$$

Therefore, the equation of the tangent is $\sqrt{2}x - 2y + 4\sqrt{2} = 0$.

$$\mathbf{c} xy = 25 \Rightarrow y = 25x^{-1}$$

$$\frac{dy}{dx} = -25x^{-2} = -\frac{25}{x^2}$$

At (5, 5),
$$m_T = \frac{dy}{dx} = -\frac{25}{5^2} = -\frac{25}{25} = -1$$

T:
$$y - 5 = -1(x - 5)$$

T:
$$y - 5 = -x + 5$$

T:
$$x + y - 5 - 5 = 0$$

T:
$$x + y - 10 = 0$$

Therefore, the equation of the tangent is x + y - 10 = 0.

$$\mathbf{d} xy = 4 \Rightarrow y = 4x^{-1}$$

$$\frac{dy}{dx} = -4x^{-2} = -\frac{4}{x^2}$$

At
$$x = \frac{1}{2}$$
, $m_T = \frac{dy}{dx} = -\frac{4}{\left(\frac{1}{2}\right)^2} = -\frac{4}{\left(\frac{1}{4}\right)} = -16$

When
$$x = \frac{1}{2}$$
, $y = \frac{4}{\left(\frac{1}{2}\right)} = 8 \Rightarrow \left(\frac{1}{2}, 8\right)$

T:
$$y - 8 = -16\left(x - \frac{1}{2}\right)$$

T:
$$y - 8 = -16x + 8$$

T: 16x + y - 8 - 8 = 0

T:
$$16x + y - 16 = 0$$

Therefore, the equation of the tangent is 16x + y - 16 = 0.

e As y < 0 in the coordinates (7, -7), then

$$y^2 = 7x \Rightarrow y = -\sqrt{7x} = -\sqrt{7}\sqrt{x} = -\sqrt{7}x^{\frac{1}{2}}$$

So
$$y = -\sqrt{7}x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = -\sqrt{7} \left(\frac{1}{2}\right) x^{-\frac{1}{2}} = -\frac{\sqrt{7}}{2} x^{-\frac{1}{2}}$$

So,
$$\frac{dy}{dx} = -\frac{\sqrt{7}}{2\sqrt{x}}$$

At
$$(7, -7)$$
, $m_T = \frac{dy}{dx} = -\frac{\sqrt{7}}{2\sqrt{7}} = -\frac{1}{2}$.

T:
$$y + 7 = -\frac{1}{2}(x - 7)$$

T:
$$2y + 14 = -1(x - 7)$$

T:
$$2y + 14 = -x + 7$$

T:
$$x + 2y + 14 - 7 = 0$$

T:
$$x + 2y + 7 = 0$$

Therefore, the equation of the tangent is x + 2y + 7 = 0.

$$\mathbf{f} xy = 16 \Rightarrow y = 16x^{-1}$$

$$\frac{dy}{dx} = -16x^{-2} = -\frac{16}{x^2}$$

At
$$x = 2\sqrt{2}$$
, $m_T = \frac{dy}{dx} = -\frac{16}{(2\sqrt{2})^2} = -\frac{16}{8} = -2$

When
$$x = 2\sqrt{2}$$
, $y = \frac{16}{2\sqrt{2}} = \frac{8}{\sqrt{2}} = \frac{8\sqrt{2}}{\sqrt{2}\sqrt{2}} = 4\sqrt{2} \Rightarrow (2\sqrt{2}, 4\sqrt{2})$

T:
$$y - 4\sqrt{2} = -2(x - 2\sqrt{2})$$

T:
$$y - 4\sqrt{2} = -2x + 4\sqrt{2}$$

T:
$$2x + y - 4\sqrt{2} - 4\sqrt{2} = 0$$

T:
$$2x + y - 8\sqrt{2} = 0$$

Therefore, the equation of the tangent is $2x + y - 8\sqrt{2} = 0$.

Quadratic Equations Exercise D, Question 2

Question:

Find the equation of the normal to the curve

 $\mathbf{a} y^2 = 20x$ at the point where y = 10,

b xy = 9 at the point $\left(-\frac{3}{2}, -6\right)$.

Give your answers in the form ax + by + c = 0, where a, b and c are integers.

Solution:

a Substituting y = 10 into $y^2 = 20x$ gives

$$(10)^2 = 20x \Rightarrow x = \frac{100}{20} = 5 \Rightarrow (5, 10)$$

As y > 0, then

$$y^2 = 20x \Rightarrow y = \sqrt{20x} = \sqrt{20}\sqrt{x} = \sqrt{4}\sqrt{5}\sqrt{x} = 2\sqrt{5}x^{\frac{1}{2}}$$

So
$$y = 2\sqrt{5}x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 2\sqrt{5} \left(\frac{1}{2}\right) x^{-\frac{1}{2}} = \sqrt{5} x^{-\frac{1}{2}}$$

So,
$$\frac{dy}{dx} = \frac{\sqrt{5}}{\sqrt{x}}$$

At (5, 10),
$$m_T = \frac{dy}{dx} = \frac{\sqrt{5}}{\sqrt{5}} = 1$$
.

Gradient of tangent at (5, 10) is $m_T = 1$.

So gradient of normal is $m_N = -1$.

N:
$$y - 10 = -1(x - 5)$$

N:
$$y - 10 = -x + 5$$

N:
$$x + y - 10 - 5 = 0$$

N:
$$x + y - 15 = 0$$

Therefore, the equation of the normal is x + y - 15 = 0.

b
$$xy = 9 \Rightarrow y = 9x^{-1}$$

$$\frac{dy}{dx} = -9x^{-2} = -\frac{9}{x^2}$$

At
$$x = -\frac{3}{2}$$
, $m_T = \frac{dy}{dx} = -\frac{9}{(-\frac{3}{2})^2} = -\frac{9}{(\frac{9}{4})} = -\frac{36}{9} = -4$

Gradient of tangent at $(-\frac{3}{2}, -6)$ is $m_T = -4$.

So gradient of normal is $m_N = \frac{-1}{-4} = \frac{1}{4}$.

N:
$$y + 6 = \frac{1}{4}(x + \frac{3}{2})$$

N:
$$4y + 24 = x + \frac{3}{2}$$

N:
$$8y + 48 = 2x + 3$$

N:
$$0 = 2x - 8y + 3 - 48$$

N:
$$0 = 2x - 8y - 45$$

Therefore, the equation of the normal is 2x - 8y - 45 = 0.

Quadratic Equations Exercise D, Question 3

Question:

The point P(4, 8) lies on the parabola with equation $y^2 = 4ax$. Find

a the value of a,

b an equation of the normal to *C* at *P*.

The normal to C at P cuts the parabola again at the point Q. Find

 \mathbf{c} the coordinates of Q,

d the length *PQ*, giving your answer as a simplified surd.

Solution:

a Substituting x = 4 and y = 8 into $y^2 = 4ax$ gives

$$(8)^2 = 4(a)(4) \Rightarrow 64 = 16a \Rightarrow a = \frac{64}{16} = 4$$

So, a = 4.

b When a = 4, $y^2 = 4(4)x \Rightarrow y^2 = 16x$.

For P(4, 8), y > 0, so

$$y^2 = 16x \Rightarrow y = \sqrt{16x} = \sqrt{16} \sqrt{x} = 4\sqrt{x} = 4x^{\frac{1}{2}}$$

So
$$y = 4x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 4\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = 2x^{-\frac{1}{2}}$$

So,
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{x}}$$

At
$$P(4, 8)$$
, $m_T = \frac{dy}{dx} = \frac{2}{\sqrt{4}} = \frac{2}{2} = 1$.

Gradient of tangent at P(4, 8) is $m_T = 1$.

So gradient of normal at P(4, 8) is $m_N = -1$.

N:
$$y - 8 = -1(x - 4)$$

N:
$$y - 8 = -x + 4$$

N:
$$y = -x + 4 + 8$$

N:
$$y = -x + 12$$

Therefore, the equation of the normal to C at P is y = -x + 12.

c Normal **N**: y = -x + 12 (1)

Parabola: $y^2 = 16x$ (2)

Multiplying (1) by 16 gives

$$16y = -16x + 192$$

Substituting (2) into this equation gives

$$16y = -y^{2} + 192$$
$$y^{2} + 16y - 192 = 0$$
$$(y + 24)(y - 8) = 0$$
$$y = -24, 8$$

At P, it is already known that y = 8. So at Q, y = -24.

Substituting y = -24 into $y^2 = 16x$ gives

$$(-24)^2 = 16x \Rightarrow 576 = 16x \Rightarrow x = \frac{576}{16} = 36.$$

Hence the coordinates of Q are (36, -24).

d The coordinates of P and Q are (4, 8) and (36, -24).

$$AB = \sqrt{(36-4)^2 + (-24-8)^2} \text{ Use } d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

$$= \sqrt{32^2 + (-32)^2}$$

$$= \sqrt{2(32)^2}$$

$$= \sqrt{2} \sqrt{(32)^2}$$

$$= 32\sqrt{2}$$

Hence the exact length AB is $32\sqrt{2}$.

Quadratic Equations Exercise D, Question 4

Question:

The point A(-2, -16) lies on the rectangular hyperbola H with equation xy = 32.

a Find an equation of the normal to H at A.

The normal to H at A meets H again at the point B.

b Find the coordinates of *B*.

Solution:

$$\mathbf{a} \ xy = 32 \Rightarrow y = 32x^{-1}$$

$$\frac{dy}{dx} = -32x^{-2} = -\frac{32}{x^2}$$

At
$$A(-2, -16)$$
, $m_T = \frac{dy}{dx} = -\frac{32}{2^2} = -\frac{32}{4} = -8$

Gradient of tangent at A(-2, -16) is $m_T = -8$.

So gradient of normal at A(-2, -16) is $m_N = \frac{-1}{-8} = \frac{1}{8}$.

N:
$$y + 16 = \frac{1}{8}(x + 2)$$

N:
$$8y + 128 = x + 2$$

N:
$$0 = x - 8y + 2 - 128$$

N:
$$0 = x - 8y - 126$$

The equation of the normal to H at A is x - 8y - 126 = 0.

b Normal **N**:
$$x - 8y - 126 = 0$$
 (1)

Hyperbola
$$H: xy = 32$$
 (2)

Rearranging (2) gives

$$y = \frac{32}{x}$$

Substituting this equation into (1) gives

$$x - 8\left(\frac{32}{x}\right) - 126 = 0$$

$$x - \left(\frac{256}{x}\right) - 126 = 0$$

Multiplying both sides by x gives

$$x^{2}-256-126x = 0$$

$$x^{2}-126x-256 = 0$$

$$(x-128)(x+2) = 0$$

$$x = 128, -2$$

At A, it is already known that x = -2. So at B, x = 128.

Substituting x = 128 into $y = \frac{32}{x}$ gives

$$y = \frac{32}{128} = \frac{1}{4}.$$

Hence the coordinates of *B* are $\left(128, \frac{1}{4}\right)$.

Quadratic Equations Exercise D, Question 5

Question:

The points P(4, 12) and Q(-8, -6) lie on the rectangular hyperbola H with equation xy = 48.

a Show that an equation of the line PQ is 3x - 2y + 12 = 0.

The point A lies on H. The normal to H at A is parallel to the chord PQ.

b Find the exact coordinates of the two possible positions of *A*.

Solution:

a The points P and Q have coordinates P(4, 12) and Q(-8, -6).

Hence gradient of
$$PQ$$
, $m_{PQ} = \frac{-6 - 12}{-8 - 4} = \frac{-18}{-12} = \frac{3}{2}$

Hence,
$$y-12 = \frac{3}{2}(x-4)$$

 $2y-24 = 3(x-4)$
 $2y-24 = 3x-12$
 $0 = 3x-2y-12+24$
 $0 = 3x-2y+12$

The line PQ has equation 3x - 2y + 12 = 0.

b From part (a), the gradient of the chord PQ is $\frac{3}{2}$.

The normal to H at A is parallel to the chord PQ, implies that the gradient of the normal to H at A is $\frac{3}{2}$.

It follows that the gradient of the tangent to *H* at *A* is

$$m_T = \frac{-1}{m_N} = \frac{-1}{\left(\frac{3}{2}\right)} = -\frac{2}{3}$$

$$H: xy = 48 \Rightarrow y = 48x^{-1}$$

$$\frac{dy}{dx} = -48x^{-2} = -\frac{48}{x^2}$$

At A,
$$m_T = \frac{dy}{dx} = -\frac{48}{x^2} = -\frac{2}{3} \Rightarrow \frac{48}{x^2} = \frac{2}{3}$$

Hence,
$$2x^2 = 144 \Rightarrow x^2 = 72 \Rightarrow x = \pm \sqrt{72} \Rightarrow x = \pm 6\sqrt{2}$$
 Note: $\sqrt{72} = \sqrt{36}\sqrt{2} = 6\sqrt{2}$.

When
$$x = 6\sqrt{2} \implies y = \frac{48}{6\sqrt{2}} = \frac{8}{\sqrt{2}} = \frac{8\sqrt{2}}{\sqrt{2}\sqrt{2}} = 4\sqrt{2}$$
.

When
$$x = -6\sqrt{2} \Rightarrow y = \frac{48}{-6\sqrt{2}} = \frac{-8}{\sqrt{2}} = \frac{-8\sqrt{2}}{\sqrt{2}\sqrt{2}} = -4\sqrt{2}$$
.

Hence the possible exact coordinates of A are $(6\sqrt{2}, 4\sqrt{2})$ or $(-6\sqrt{2}, -4\sqrt{2})$.

Quadratic Equations Exercise D, Question 6

Question:

The curve *H* is defined by the equations $x = \sqrt{3}t$, $y = \frac{\sqrt{3}}{t}$, $t \in \mathbb{R}$, $t \neq 0$.

The point *P* lies on *H* with *x*-coordinate $2\sqrt{3}$. Find:

 \mathbf{a} a Cartesian equation for the curve H,

b an equation of the normal to H at P.

The normal to H at P meets H again at the point Q.

c Find the exact coordinates of *Q*.

Solution:

$$\mathbf{a} \ xy = \sqrt{3} \, t \times \left(\frac{\sqrt{3}}{t} \right)$$

$$xy = \frac{3t}{t}$$

Hence, the Cartesian equation of H is xy = 3.

b
$$xy = 3 \Rightarrow y = 3x^{-1}$$

$$\frac{dy}{dx} = -3x^{-2} = -\frac{3}{x^2}$$

At
$$x = 2\sqrt{3}$$
, $m_T = \frac{dy}{dx} = -\frac{3}{(2\sqrt{3})^2} = -\frac{3}{12} = -\frac{1}{4}$

Gradient of tangent at *P* is $m_T = -\frac{1}{4}$.

So gradient of normal at *P* is $m_N = \frac{-1}{\left(-\frac{1}{4}\right)} = 4$.

At P, when
$$x = 2\sqrt{3}$$
, $\Rightarrow 2\sqrt{3} = \sqrt{3}t \Rightarrow t = \frac{2\sqrt{3}}{\sqrt{3}} = 2$

When
$$t = 2$$
, $y = \frac{\sqrt{3}}{2} \Rightarrow P\left(2\sqrt{3}, \frac{\sqrt{3}}{2}\right)$.

N:
$$y - \frac{\sqrt{3}}{2} = 4(x - 2\sqrt{3})$$

N:
$$2y - \sqrt{3} = 8(x - 2\sqrt{3})$$

N:
$$2y - \sqrt{3} = 8x - 16\sqrt{3}$$

N:
$$0 = 8x - 2y - 16\sqrt{3} + \sqrt{3}$$

N:
$$0 = 8x - 2y - 15\sqrt{3}$$

The equation of the normal to *H* at *P* is $8x - 2y - 15\sqrt{3} = 0$.

c Normal **N**:
$$8x - 2y - 15\sqrt{3} = 0$$
 (1)

Hyperbola
$$H$$
: $xy = 3$ (2)

Rearranging (2) gives

$$y = \frac{3}{r}$$

Substituting this equation into (1) gives

$$8x - 2\left(\frac{3}{x}\right) - 15\sqrt{3} = 0$$

$$8x - \left(\frac{6}{x}\right) - 15\sqrt{3} = 0$$

Multiplying both sides by x gives

$$8x - \left(\frac{6}{x}\right) - 15\sqrt{3} = 0$$

$$8x^2 - 6 - 15\sqrt{3}x = 0$$

$$8x^2 - 15\sqrt{3}x - 6 = 0$$

At P, it is already known that $x = 2\sqrt{3}$, so $(x - 2\sqrt{3})$ is a factor of this quadratic equation. Hence,

$$(x-2\sqrt{3})(8x+\sqrt{3})=0$$

$$x = 2\sqrt{3}$$
 (at *P*) or $x = -\frac{\sqrt{3}}{8}$ (at *Q*).

At *P*, when
$$x = -\frac{\sqrt{3}}{8}$$
, $\Rightarrow \frac{-\sqrt{3}}{8} = \sqrt{3} t \Rightarrow t = \frac{-\sqrt{3}}{8\sqrt{3}} = -\frac{1}{8}$

When
$$t = -\frac{1}{8}$$
, $y = \frac{\sqrt{3}}{\left(-\frac{1}{8}\right)} = -8\sqrt{3} \implies Q\left(-\frac{1}{8}\sqrt{3}, -8\sqrt{3}\right)$.

Hence the coordinates of Q are $\left(-\frac{1}{8}\sqrt{3}, -8\sqrt{3}\right)$.

Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise D, Question 7

Question:

The point $P(4t^2, 8t)$ lies on the parabola C with equation $y^2 = 16x$. The point P also lies on the rectangular hyperbola H with equation xy = 4.

a Find the value of t, and hence find the coordinates of P.

The normal to H at P meets the x-axis at the point N.

b Find the coordinates of *N*.

The tangent to C at P meets the x-axis at the point T.

c Find the coordinates of *T*.

d Hence, find the area of the triangle *NPT*.

Solution:

a Substituting $x = 4t^2$ and y = 8t into xy = 4 gives

$$(4t^2)(8t) = 4 \Rightarrow 32t^3 = 4 \Rightarrow t^3 = \frac{4}{32} = \frac{1}{8}.$$

So
$$t = \sqrt[3]{\left(\frac{1}{8}\right)}$$
.

When
$$t = \frac{1}{2}$$
, $x = 4\left(\frac{1}{2}\right)^2 = 1$.

When
$$t = \frac{1}{2}$$
, $y = 8\left(\frac{1}{2}\right) = 4$.

Hence the value of t is $\frac{1}{2}$ and P has coordinates (1, 4).

b
$$xy = 4 \Rightarrow y = 4x^{-1}$$

$$\frac{dy}{dx} = -4x^{-2} = -\frac{4}{x^2}$$

At
$$P(1,4)$$
, $m_T = \frac{dy}{dx} = -\frac{4}{(1)^2} = -\frac{4}{1} = -4$

Gradient of tangent at P(1, 4) is $m_T = -4$.

So gradient of normal at P(1, 4) is $m_N = \frac{-1}{-4} = \frac{1}{4}$.

N:
$$y-4=\frac{1}{4}(x-1)$$

N:
$$4y - 16 = x - 1$$

N: 0 = x - 4y + 15

N cuts x-axis \Rightarrow y = 0 \Rightarrow 0 = x + 15 \Rightarrow x = -15

Therefore, the coordinates of N are (-15, 0).

c For P(1, 4), y > 0, so

$$y^2 = 16x \Rightarrow y = \sqrt{16x} = \sqrt{16}\sqrt{x} = 4\sqrt{x} = 4\sqrt{x} = 4x^{\frac{1}{2}}$$

So
$$y = 4x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 4\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = 2x^{-\frac{1}{2}}$$

So,
$$\frac{dy}{dx} = \frac{2}{\sqrt{x}}$$

At
$$P(1, 4)$$
, $m_T = \frac{dy}{dx} = \frac{2}{\sqrt{1}} = \frac{2}{1} = 2$.

Gradient of tangent at P(1, 4) is $m_T = 2$.

T:
$$y - 4 = 2(x - 1)$$

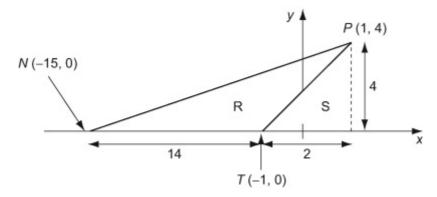
T:
$$y - 4 = 2x - 2$$

T:
$$0 = 2x - y + 2$$

T cuts x-axis
$$\Rightarrow$$
 y = 0 \Rightarrow 0 = 2x + 2 \Rightarrow x = -1

Therefore, the coordinates of T are (-1, 0).

d



Using sketch drawn, Area
$$\triangle$$
 NPT = Area($R+S$) - Area(S)
$$= \frac{1}{2}(16)(4) - \frac{1}{2}(2)(4)$$

$$= 32 - 4$$

$$= 28$$

Therefore, Area $\triangle NPT = 28$

Quadratic Equations Exercise E, Question 1

Question:

The point $P(3t^2, 6t)$ lies on the parabola C with equation $y^2 = 12x$.

a Show that an equation of the tangent to C at P is $yt = x + 3t^2$.

b Show that an equation of the normal to C at P is $xt + y = 3t^3 + 6t$.

Solution:

a C:
$$y^2 = 12x \Rightarrow y = \pm \sqrt{12x} = \pm \sqrt{4} \sqrt{3} \sqrt{x} = \pm 2\sqrt{3} x^{\frac{1}{2}}$$

So
$$y = \pm 2\sqrt{3}x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = \pm 2\sqrt{3} \left(\frac{1}{2}\right) x^{-\frac{1}{2}} = \pm \sqrt{3} x^{-\frac{1}{2}}$$

So,
$$\frac{dy}{dx} = \pm \frac{\sqrt{3}}{\sqrt{x}}$$

At
$$P(3t^2, 6t)$$
, $m_T = \frac{dy}{dx} = \pm \frac{\sqrt{3}}{\sqrt{3t^2}} = \pm \frac{\sqrt{3}}{\sqrt{3}t} = \frac{1}{t}$.

T:
$$y - 6t = \frac{1}{t}(x - 3t^2)$$

T:
$$ty - 6t^2 = x - 3t^2$$

T:
$$yt = x - 3t^2 + 6t^2$$

T:
$$yt = x + 3t^2$$

The equation of the tangent to C at P is $yt = x + 3t^2$.

b Gradient of tangent at $P(3t^2, 6t)$ is $m_T = \frac{1}{t}$.

So gradient of normal at $P(3t^2, 6t)$ is $m_N = \frac{-1}{\left(\frac{1}{t}\right)} = -t$.

N:
$$y - 6t = -t(x - 3t^2)$$

N:
$$y - 6t = -tx + 3t^3$$

N:
$$xt + y = 3t^3 + 6t$$
.

The equation of the normal to *C* at *P* is $xt + y = 3t^3 + 6t$.

Quadratic Equations Exercise E, Question 2

Question:

The point $P(6t, \frac{6}{t})$, $t \neq 0$, lies on the rectangular hyperbola H with equation xy = 36.

a Show that an equation of the tangent to *H* at *P* is $x + t^2y = 12t$.

b Show that an equation of the normal to *H* at *P* is $t^3x - ty = 6(t^4 - 1)$.

Solution:

a *H*:
$$xy = 36 \Rightarrow y = 36x^{-1}$$

$$\frac{dy}{dx} = -36x^{-2} = -\frac{36}{x^2}$$

At
$$P(6t, \frac{6}{t})$$
, $m_T = \frac{dy}{dx} = -\frac{36}{(6t)^2} = -\frac{36}{36t^2} = -\frac{1}{t^2}$

T:
$$y - \frac{6}{t} = -\frac{1}{t^2}(x - 6t)$$
 (Now multiply both sides by t^2 .)

T:
$$t^2y - 6t = -(x - 6t)$$

T:
$$t^2y - 6t = -x + 6t$$

T:
$$x + t^2 y = 6t + 6t$$

T:
$$x + t^2 y = 12t$$

The equation of the tangent to *H* at *P* is $x + t^2y = 12t$.

b Gradient of tangent at $P(6t, \frac{6}{t})$ is $m_T = -\frac{1}{t^2}$.

So gradient of normal at $P\left(6t, \frac{6}{t}\right)$ is $m_N = \frac{-1}{\left(-\frac{1}{t^2}\right)} = t^2$.

N: $y - \frac{6}{t} = t^2(x - 6t)$ (Now multiply both sides by t.)

N:
$$ty - 6 = t^3(x - 6t)$$

N:
$$ty - 6 = t^3x - 6t^4$$

N:
$$6t^4 - 6 = t^3x - ty$$

N:
$$6(t^4 - 1) = t^3x - ty$$

The equation of the normal to *H* at *P* is $t^3x - ty = 6(t^4 - 1)$.

Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise E, Question 3

Question:

The point $P(5t^2, 10t)$ lies on the parabola C with equation $y^2 = 4ax$, where a is a constant and $t \neq 0$.

a Find the value of *a*.

b Show that an equation of the tangent to C at P is $yt = x + 5t^2$.

The tangent to C at P cuts the x-axis at the point X and the y-axis at the point Y. The point O is the origin of the coordinate system.

c Find, in terms of t, the area of the triangle OXY.

Solution:

a Substituting $x = 5t^2$ and y = 10t into $y^2 = 4ax$ gives

$$(10t)^2 = 4(a)(5t^2) \Rightarrow 100t^2 = 20t^2a \Rightarrow a = \frac{100t^2}{20t^2} = 5$$

So, a = 5.

b When
$$a = 5$$
, $v^2 = 4(5)x \Rightarrow v^2 = 20x$.

C:
$$y^2 = 20x \Rightarrow y = \pm \sqrt{20x} = \pm \sqrt{4} \sqrt{5} \sqrt{x} = \pm 2\sqrt{5} x^{\frac{1}{2}}$$

So
$$y = \pm 2\sqrt{5} x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = \pm 2\sqrt{5} \left(\frac{1}{2}\right) x^{-\frac{1}{2}} = \pm \sqrt{5} x^{-\frac{1}{2}}$$

So,
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \frac{\sqrt{5}}{\sqrt{x}}$$

At
$$P(5t^2, 10t)$$
, $m_T = \frac{dy}{dx} = \frac{\sqrt{5}}{\sqrt{5t^2}} = \frac{\sqrt{5}}{\sqrt{5}t} = \frac{1}{t}$.

T:
$$y - 10t = \frac{1}{t}(x - 5t^2)$$

T:
$$ty - 10t^2 = x - 5t^2$$

T:
$$yt = x - 5t^2 + 10t^2$$

T:
$$yt = x + 5t^2$$

Therefore, the equation of the tangent to C at P is $yt = x + 5t^2$.

For
$$(at^2, 2at)$$
 on $y^2 = 4ax$

We always get $\frac{d}{dx}(y^2) = 4a$

$$2y\frac{dy}{dx} = 4a\frac{dy}{dx} = \frac{2a}{y} = \frac{2a}{2ac} = \frac{1}{t}$$

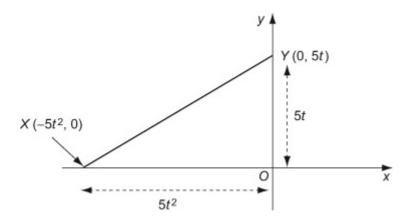
c T:
$$yt = x + 5t^2$$

T cuts x-axis \Rightarrow y = 0 \Rightarrow 0 = x + 5 t^2 \Rightarrow x = -5 t^2

Hence the coordinates of *X* are $(-5t^2, 0)$.

T cuts y-axis
$$\Rightarrow x = 0 \Rightarrow yt = 5t^2 \Rightarrow y = 5t$$

Hence the coordinates of Y are (0, 5t).



Using sketch drawn, Area $\Delta OXY = \frac{1}{2}(5t^2)(5t)$ = $\frac{25}{2}t^3$

Therefore, Area $\triangle OXY = \frac{25}{2}t^3$

Quadratic Equations Exercise E, Question 4

Question:

The point $P(at^2, 2at)$, $t \ne 0$, lies on the parabola C with equation $y^2 = 4ax$, where a is a positive constant.

a Show that an equation of the tangent to C at P is $ty = x + at^2$.

The tangent to C at the point A and the tangent to C at the point B meet at the point with coordinates (-4a, 3a).

b Find, in terms of a, the coordinates of A and the coordinates of B.

Solution:

a C:
$$y^2 = 4ax \Rightarrow y = \pm \sqrt{4ax} = \sqrt{4} \sqrt{a} \sqrt{x} = 2\sqrt{a} x^{\frac{1}{2}}$$

So
$$y = 2\sqrt{a}x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 2\sqrt{a} \left(\frac{1}{2}\right) x^{-\frac{1}{2}} = \sqrt{a} x^{-\frac{1}{2}}$$

So,
$$\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{x}}$$

At
$$P(at^2, 2at)$$
, $m_T = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{a}}{\sqrt{at^2}} = \frac{\sqrt{a}}{\sqrt{a}t} = \frac{1}{t}$.

T:
$$y - 2at = \frac{1}{t}(x - at^2)$$

T:
$$ty - 2at^2 = x - at^2$$

T:
$$tv = x - at^2 + 2at^2$$

T:
$$ty = x + at^2$$

The equation of the tangent to C at P is $ty = x + at^2$.

b As the tangent **T** goes through (-4a, 3a), then substitute x = -4a and y = 3a into **T**.

$$t(3a) = -4a + at^2$$
$$0 = at^2 - 3at - 4a$$

$$t^2 - 3t - 4 = 0$$

$$(t+1)(t-4) = 0$$

$$t = -1, 4$$

When
$$t = -1$$
, $x = a(-1)^2 = a$, $y = 2a(-1) = -2a \Rightarrow (a, -2a)$.

When
$$t = 4$$
, $x = a(4)^2 = 16a$, $y = 2a(4) = 8a \Rightarrow (16a, 8a)$.

The coordinates of A and B are (a, -2a) and (16a, 8a).

Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise E, Question 5

Question:

The point $P(4t, \frac{4}{t})$, $t \neq 0$, lies on the rectangular hyperbola H with equation xy = 16.

a Show that an equation of the tangent to C at P is $x + t^2y = 8t$.

The tangent to H at the point A and the tangent to H at the point B meet at the point X with y-coordinate A. It is on the directrix of the parabola A0 with equation A2 = 16A3.

b Write down the coordinates of *X*.

c Find the coordinates of *A* and *B*.

d Deduce the equations of the tangents to H which pass through X. Give your answers in the form ax + by + c = 0, where a, b and c are integers.

Solution:

a *H*:
$$xy = 16 \Rightarrow y = 16x^{-1}$$

$$\frac{dy}{dx} = -16x^{-2} = -\frac{16}{x^2}$$

At
$$P(4t, \frac{4}{t})$$
, $m_T = \frac{dy}{dx} = -\frac{16}{(4t)^2} = -\frac{16}{16t^2} = -\frac{1}{t^2}$

T:
$$y - \frac{4}{t} = -\frac{1}{t^2}(x - 4t)$$
 (Now multiply both sides by t^2 .)

T:
$$t^2y - 4t = -(x - 4t)$$

T:
$$t^2y - 4t = -x + 4t$$

T:
$$x + t^2 y = 4t + 4t$$

T:
$$x + t^2 y = 8t$$

The equation of the tangent to *H* at *P* is $x + t^2y = 8t$.

b
$$y^2 = 16x$$
. So $4a = 16$, gives $a = \frac{16}{4} = 4$.

So the directrix has equation x + 4 = 0 or x = -4.

Therefore at X, x = -4 and as stated y = 5.

The coordinates of X are (-4, 5).

c T:
$$x + t^2y = 8t$$

As the tangent **T** goes through (-4, 5), then substitute x = -4 and y = 5 into **T**.

$$(-4) + t2(5) = 8t$$
$$5t2 - 4 = 8t$$
$$5t2 - 8t - 4 = 0$$
$$(t - 2)(5t + 2) = 0$$
$$t = 2, -\frac{2}{5}$$

When
$$t = 2$$
, $x = 4(2) = 8$, $y = \frac{4}{2} = 2 \Rightarrow (8, 2)$.

When
$$t = -\frac{2}{5}$$
, $x = 4(-\frac{2}{5}) = -\frac{8}{5}$, $y = \frac{4}{\left(-\frac{2}{5}\right)} = -10 \Rightarrow (-\frac{8}{5}, -10)$.

The coordinates of A and B are (8, 2) and $(-\frac{8}{5}, -10)$.

d Substitute t = 2 and $t = -\frac{2}{5}$ into **T** to find the equations of the tangents to *H* that go through the point *X*.

When
$$t = 2$$
, **T**: $x + 4y = 16 \Rightarrow x + 4y - 16 = 0$

When
$$t = -\frac{2}{5}$$
, **T**: $x + \left(-\frac{2}{5}\right)^2 y = 8\left(-\frac{2}{5}\right)$

T:
$$x + \frac{4}{25}y = -\frac{16}{5}$$

T:
$$25x + 4y = -80$$

T:
$$25x + 4y + 80 = 0$$

Hence the equations of the tangents are x + 4y - 16 = 0 and 25x + 4y + 80 = 0.

Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise E, Question 6

Question:

The point $P(at^2, 2at)$ lies on the parabola C with equation $y^2 = 4ax$, where a is a constant and $t \ne 0$. The tangent to C at P cuts the x-axis at the point A.

a Find, in terms of a and t, the coordinates of A.

The normal to C at P cuts the x-axis at the point B.

b Find, in terms of a and t, the coordinates of B.

c Hence find, in terms of *a* and *t*, the area of the triangle *APB*.

Solution:

a C:
$$y^2 = 4ax \Rightarrow y = \pm \sqrt{4ax} = \sqrt{4} \sqrt{a} \sqrt{x} = 2\sqrt{a} x^{\frac{1}{2}}$$

So
$$y = 2\sqrt{a}x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 2\sqrt{a}\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = \sqrt{a}x^{-\frac{1}{2}}$$

So,
$$\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{x}}$$

At
$$P(at^2, 2at)$$
, $m_T = \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{at^2}} = \frac{\sqrt{a}}{\sqrt{a}t} = \frac{1}{t}$.

T:
$$y - 2at = \frac{1}{t}(x - at^2)$$

T:
$$ty - 2at^2 = x - at^2$$

T:
$$ty = x - at^2 + 2at^2$$

T:
$$ty = x + at^2$$

T cuts *x*-axis \Rightarrow y = 0. So,

$$0 = x + at^2 \Longrightarrow x = -at^2$$

The coordinates of A are $(-at^2, 0)$.

b Gradient of tangent at $P(at^2, 2at)$ is $m_T = \frac{1}{t}$.

So gradient of normal at $P(at^2, 2at)$ is $m_N = \frac{-1}{\left(\frac{1}{t}\right)} = -t$.

N:
$$y - 2at = -t(x - at^2)$$

N:
$$y - 2at = -tx + at^3$$

N cuts x-axis \Rightarrow y = 0. So,

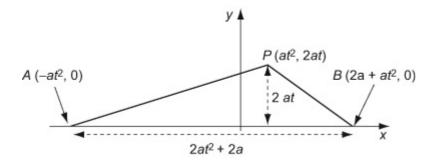
$$0 - 2at = -tx + at^3$$

$$tx = 2at + at^3$$

$$x = 2a + at^2$$

The coordinates of B are $(2a + at^2, 0)$.

 \mathbf{c}



Using sketch drawn, Area
$$\triangle APB = \frac{1}{2}(2a + 2at^2)(2at)$$

= $at(2a + 2at^2)$
= $2a^2t(1+t^2)$

Therefore, Area $\triangle APB = 2a^2t(1+t^2)$

Quadratic Equations Exercise E, Question 7

Question:

The point $P(2t^2, 4t)$ lies on the parabola C with equation $y^2 = 8x$.

a Show that an equation of the normal to C at P is $xt + y = 2t^3 + 4t$.

The normals to C at the points R, S and T meet at the point (12, 0).

b Find the coordinates of *R*, *S* and *T*.

c Deduce the equations of the normals to *C* which all pass through the point (12, 0).

Solution:

a C:
$$y^2 = 8x \Rightarrow y = \pm \sqrt{8x} = \sqrt{4}\sqrt{2}\sqrt{x} = 2\sqrt{2}x^{\frac{1}{2}}$$

So
$$y = 2\sqrt{2}x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 2\sqrt{2}\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = \sqrt{2}x^{-\frac{1}{2}}$$

So,
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{2}}{\sqrt{x}}$$

At
$$P(2t^2, 4t)$$
, $m_T = \frac{dy}{dx} = \frac{\sqrt{2}}{\sqrt{2}t^2} = \frac{\sqrt{2}}{\sqrt{2}t} = \frac{1}{t}$.

Gradient of tangent at $P(2t^2, 4t)$ is $m_T = \frac{1}{t}$.

So gradient of normal at $P(2t^2, 4t)$ is $m_N = \frac{-1}{\left(\frac{1}{t}\right)} = -t$.

N:
$$y - 4t = -t(x - 2t^2)$$

N:
$$y - 4t = -tx + 2t^3$$

N:
$$xt + y = 2t^3 + 4t$$
.

The equation of the normal to *C* at *P* is $xt + y = 2t^3 + 4t$.

b As the normals go through (12, 0), then substitute x = 12 and y = 0 into **N**.

$$(12)t + 0 = 2t^3 + 4t$$

$$12t = 2t^3 + 4t$$

$$0 = 2t^3 + 4t - 12t$$

$$0 = 2t^3 - 8t$$

$$t^3 - 4t = 0$$

$$t(t^2 - 4) = 0$$

$$t(t-2)(t+2) = 0$$

$$t = 0, 2, -2$$

When
$$t = 0$$
, $x = 2(0)^2 = 0$, $y = 4(0) = 0$ $\Rightarrow (0, 0)$.

When
$$t = 2$$
, $x = 2(2)^2 = 8$, $y = 4(2) = 8$ \Rightarrow (8, 8).

When
$$t = -2$$
, $x = 2(-2)^2 = 8$, $y = 4(-2) = -8$ \Rightarrow (8, -8).

The coordinates of R, S and T are (0, 0), (8, 8) and (8, -8).

c Substitute t = 0, 2, -2 into $xt + y = 2t^3 + 4t$. to find the equations of the normals to H that go through the point (12, 0).

When
$$t = 0$$
, **N**: $0 + y = 0 + 0$. $\Rightarrow y = 0$

When
$$t = 2$$
, **N**: $x(2) + y = 2(8) + 4(2)$

N:
$$2x + y = 24$$

N:
$$2x + y - 24 = 0$$

When
$$t = -2$$
, **N**: $x(-2) + y = 2(-8) + 4(-2)$

N:
$$-2x + y = -24$$

N:
$$2x - y - 24 = 0$$

Hence the equations of the normals are y = 0, 2x + y - 24 = 0 and 2x - y - 24 = 0.

Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise E, Question 8

Question:

The point $P(at^2, 2at)$ lies on the parabola C with equation $y^2 = 4ax$, where a is a positive constant and $t \ne 0$. The tangent to C at P meets the y-axis at Q.

a Find in terms of a and t, the coordinates of Q.

The point S is the focus of the parabola.

b State the coordinates of *S*.

c Show that *PQ* is perpendicular to *SQ*.

Solution:

a C:
$$y^2 = 4ax \Rightarrow y = \sqrt{4ax} = \sqrt{4} \sqrt{a} \sqrt{x} = 2\sqrt{a} x^{\frac{1}{2}}$$

So
$$y = 2\sqrt{a}x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 2\sqrt{a}\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = \sqrt{a}x^{-\frac{1}{2}}$$

So,
$$\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{x}}$$

At
$$P(at^2, 2at)$$
, $m_T = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{a}}{\sqrt{at^2}} = \frac{\sqrt{a}}{\sqrt{a}t} = \frac{1}{t}$.

T:
$$y - 2at = \frac{1}{t}(x - at^2)$$

T:
$$ty - 2at^2 = x - at^2$$

$$\mathbf{T:}\ ty = x - at^2 + 2at^2$$

T:
$$ty = x + at^2$$

T meets $y - axis \Rightarrow x = 0$. So,

$$ty = 0 + at^2 \Rightarrow y = \frac{at^2}{t} \Rightarrow y = at$$

The coordinates of Q are (0, at).

b The focus of a parabola with equation $y^2 = 4ax$ has coordinates (a, 0).

So, the coordinates of S are (a, 0).

$$\mathbf{c} P(at^2, 2at), Q(0, at) \text{ and } S(a, 0).$$

$$m_{PQ} = \frac{at - 2at}{0 - at^2} = \frac{-at}{-at^2} = \frac{1}{t}.$$
 $m_{SQ} = \frac{0 - at}{a - 0} = -\frac{at}{a} = -t.$

Therefore,
$$m_{PQ} \times m_{SQ} = \frac{1}{t} \times -t = -1$$
.

So PQ is perpendicular to SQ.

Quadratic Equations Exercise E, Question 9

Question:

The point $P(6t^2, 12t)$ lies on the parabola C with equation $y^2 = 24x$.

a Show that an equation of the tangent to the parabola at *P* is $ty = x + 6t^2$.

The point X has y-coordinate 9 and lies on the directrix of C.

b State the *x*-coordinate of *X*.

The tangent at the point B on C goes through point X.

c Find the possible coordinates of *B*.

Solution:

a C:
$$v^2 = 24x \Rightarrow v = \pm \sqrt{24x} = \sqrt{4} \sqrt{6} \sqrt{x} = 2\sqrt{6} x^{\frac{1}{2}}$$

So
$$y = 2\sqrt{6}x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 2\sqrt{6}\left(\frac{1}{2}\right)x^{\frac{1}{2}} = \sqrt{6}x^{-\frac{1}{2}}$$

So,
$$\frac{dy}{dx} = \frac{\sqrt{6}}{\sqrt{x}}$$

At
$$P(6t^2, 12t)$$
, $m_T = \frac{dy}{dx} = \frac{\sqrt{6}}{\sqrt{6t^2}} = \frac{\sqrt{6}}{\sqrt{6}t} = \frac{1}{t}$.

T:
$$y - 12t = \frac{1}{t}(x - 6t^2)$$

T:
$$ty - 12t^2 = x - 6t^2$$

T:
$$ty = x - 6t^2 + 12t^2$$

T:
$$ty = x + 6t^2$$

The equation of the tangent to C at P is $ty = x + 6t^2$.

b
$$y^2 = 24x$$
. So $4a = 24$, gives $a = \frac{24}{4} = 6$.

So the directrix has equation x + 6 = 0 or x = -6.

Therefore at X, x = -6.

c T: $ty = x + 6t^2$ and the coordinates of X are (-6, 9).

As the tangent **T** goes through (-6, 9), then substitute x = -6 and y = 9 into **T**.

$$t(9) = -6 + 6t^{2}$$

$$0 = 6t^{2} - 9t - 6$$

$$2t^{2} - 3t - 2 = 0$$

$$(t - 2)(2t + 1) = 0$$

$$t = 2, -\frac{1}{2}$$

When
$$t = 2$$
, $x = 6(2)^2 = 24$, $y = 12(2) = 24 \Rightarrow (24, 24)$.

When
$$t = -\frac{1}{2}$$
, $x = 6\left(-\frac{1}{2}\right)^2 = \frac{3}{2}$, $y = 12\left(-\frac{1}{2}\right) = -6 \Rightarrow \left(\frac{3}{2}, -6\right)$.

The possible coordinates of *B* are (24, 24) and $\left(\frac{3}{2}, -6\right)$.

Quadratic Equations Exercise F, Question 1

Question:

A parabola C has equation $y^2 = 12x$. The point S is the focus of C.

a Find the coordinates of *S*.

The line *l* with equation y = 3x intersects *C* at the point *P* where y > 0.

b Find the coordinates of *P*.

c Find the area of the triangle *OPS*, where *O* is the origin.

Solution:

a
$$y^2 = 12x$$
. So $4a = 12$, gives $a = \frac{12}{4} = 3$.

So the focus S, has coordinates (3, 0).

b Line *l*:
$$y = 3x$$
 (1)

Parabola *C*:
$$y^2 = 12x$$
 (2)

Substituting (1) into (2) gives

$$(3x)^2 = 12x$$
$$9x^2 = 12x$$
$$9x^2 - 12x = 0$$
$$3x(3x - 4) = 0$$

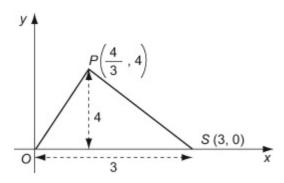
 $x = 0, \frac{4}{3}$

Substituting these values of x back into equation (1) gives

$$x = 0, y = 3(0) = 0 \Rightarrow (0, 0)$$
$$x = \frac{4}{3}, y = 3\left(\frac{4}{3}\right) = 4 \Rightarrow \left(\frac{4}{3}, 4\right)$$

As y > 0, the coordinates of P are $\left(\frac{4}{3}, 4\right)$.

c



Using sketch drawn, Area
$$\triangle OPS = \frac{1}{2}(3)(4)$$

= $\frac{1}{2}(12)$
= 6

Therefore, Area $\triangle OPS = 6$

Quadratic Equations Exercise F, Question 2

Question:

A parabola C has equation $y^2 = 24x$. The point P with coordinates (k, 6), where k is a constant lies on C.

a Find the value of *k*.

The point *S* is the focus of *C*.

b Find the coordinates of *S*.

The line l passes through S and P and intersects the directrix of C at the point D.

c Show that an equation for *l* is 4x + 3y - 24 = 0.

d Find the area of the triangle OPD, where O is the origin.

Solution:

a (*k*, 6) lies on $y^2 = 24x$ gives

$$6^2 = 24k \Rightarrow 36 = 24k \Rightarrow \frac{36}{24} = k \Rightarrow k = \frac{3}{2}$$
.

b
$$y^2 = 24x$$
. So $4a = 24$, gives $a = \frac{24}{4} = 6$.

So the focus S, has coordinates (6, 0).

c The point *P* and *S* have coordinates $P(\frac{3}{2}, 6)$ and S(6, 0).

$$m_l = m_{PS} = \frac{0-6}{6-\frac{3}{2}} = \frac{-6}{\frac{9}{2}} = -\frac{12}{9} = -\frac{4}{3}$$

l:
$$y-0=-\frac{4}{3}(x-6)$$

l:
$$3y = -4(x - 6)$$

l:
$$3y = -4x + 24$$

l:
$$4x + 3y - 24 = 0$$

Therefore an equation for l is 4x + 3y - 24 = 0.

d From (b), as a = 6, an equation of the directrix is x + 6 = 0 or x = -6. Substituting x = -6 into l gives:

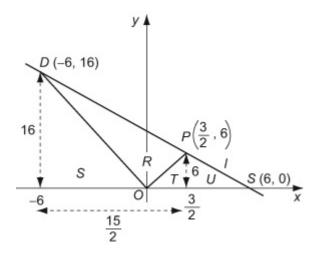
$$4(-6) + 3y - 24 = 0$$

$$3y = 24 + 24$$

$$3y = 48$$

$$y = 16$$

Hence the coordinates of D are (-6, 16).



Using the sketch and the regions as labeled you can find the area required. Let Area $\triangle OPD = Area(R)$

Method 1

Area(R) = Area(RST) - Area(S) - Area(T)
=
$$\frac{1}{2}(16+6)\left(\frac{15}{2}\right) - \frac{1}{2}(6)(16) - \frac{1}{2}\left(\frac{3}{2}\right)(6)$$

= $\frac{1}{2}(22)\left(\frac{15}{2}\right) - (3)(16) - \left(\frac{3}{2}\right)(3)$
= $\left(\frac{165}{2}\right) - 48 - \left(\frac{9}{2}\right)$
= 30

Therefore, Area $\triangle OPD = 30$

Method 2

Area(R) = Area(RSTU) - Area(S) - Area(TU)
=
$$\frac{1}{2}$$
(12)(16) - $\frac{1}{2}$ (6)(16) - $\frac{1}{2}$ (6)(6)
= 96 - 48 - 18
= 30

Therefore, Area $\triangle OPD = 30$

Quadratic Equations Exercise F, Question 3

Question:

The parabola C has parametric equations $x = 12t^2$, y = 24t. The focus to C is at the point S.

a Find a Cartesian equation of *C*.

The point *P* lies on *C* where y > 0. *P* is 28 units from *S*.

b Find an equation of the directrix of *C*.

c Find the exact coordinates of the point P.

d Find the area of the triangle *OSP*, giving your answer in the form $k\sqrt{3}$, where k is an integer.

Solution:

$$\mathbf{a} \qquad \mathbf{y} = 24t$$

So
$$t = \frac{y}{24}$$
 (1)

$$x = 12t^2$$
 (2)

Substitute (1) into (2):

$$x = 12\left(\frac{y}{24}\right)^2$$

So
$$x = \frac{12y^2}{576}$$
 simplifies to $x = \frac{y^2}{48}$

Hence, the Cartesian equation of C is $y^2 = 48x$.

b
$$y^2 = 48x$$
. So $4a = 48$, gives $a = \frac{48}{4} = 12$.

Therefore an equation of the directrix of C is x + 12 = 0 or x = -12.

C

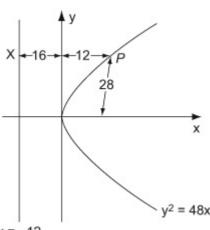
From (b), as a = 12, the coordinates of S, the focus to C are (12, 0). Hence, drawing a sketch gives,

The (shortest) distance of P to the line x = -16 is the distance XP.

The distance SP = 28.

The focus-directrix property implies that SP = XP = 28.

The directrix has equation x = -12.

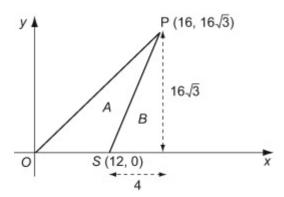


x = -12When x = 16, $y^2 = 48(16) \Rightarrow y^2 = 3(16)^2$

As
$$y > 0$$
, then $y = \sqrt{3(16)^2} = 16\sqrt{3}$.

Hence the exact coordinates of P are $(16, 16\sqrt{3})$.

d



Using the sketch and the regions as labeled you can find the area required. Let Area \triangle OSP = Area(A)

Area(A) = Area(AB) - Area(B)
=
$$\frac{1}{2}(16)(16\sqrt{3}) - \frac{1}{2}(4)(16\sqrt{3})$$

= $128\sqrt{3} - 32\sqrt{3}$
= $96\sqrt{3}$

Therefore, Area \triangle *OSP* = $96\sqrt{3}$ and k = 96.

© Pearson Education Ltd 2008

Therefore the *x*-coordinate of *P* is x = 28 - 12 = 16.

Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise F, Question 4

Question:

The point $(4t^2, 8t)$ lies on the parabola C with equation $y^2 = 16x$. The line l with equation 4x - 9y + 32 = 0 intersects the curve at the points P and Q.

a Find the coordinates of P and Q.

b Show that an equation of the normal to C at $(4t^2, 8t)$ is $xt + y = 4t^3 + 8t$.

c Hence, find an equation of the normal to C at P and an equation of the normal to C at Q.

The normal to C at P and the normal to C at Q meet at the point R.

d Find the coordinates of *R* and show that *R* lies on *C*.

e Find the distance OR, giving your answer in the form $k\sqrt{97}$, where k is an integer.

Solution:

a Method 1

Line: 4x - 9y + 32 = 0 (1)

Parabola *C*: $v^2 = 16x$ (2)

Multiplying (1) by 4 gives

$$16x - 36y + 128 = 0$$
 (3)

Substituting (2) into (3) gives

$$y^{2} - 36y + 128 = 0$$
$$(y - 4)(y - 32) = 0$$
$$y = 4, 32$$

When
$$y = 4$$
, $4^2 = 16x \implies x = \frac{16}{16} = 1 \implies (1, 4)$.

When
$$y = 32$$
, $32^2 = 16x \implies x = \frac{1024}{16} = 64 \implies (64, 32)$.

The coordinates of P and Q are (1, 4) and (64, 32).

Method 2

Line: 4x - 9y + 32 = 0 (1)

Parabola *C*: $x = 4t^2, y = 8t$ (2)

Substituting (2) into (1) gives

$$4(4t^2) - 9(8t) + 32 = 0$$

$$16t^2 - 72t + 32 = 0$$

$$2t^2 - 9t + 4 = 0$$
$$(2t - 1)(t - 4) = 0$$

$$(2t-1)(t-4) =$$

$$t = \frac{1}{2}, 4$$

When
$$t = \frac{1}{2}$$
, $x = 4\left(\frac{1}{2}\right)^2 = 1$, $y = 8\left(\frac{1}{2}\right) = 4 \implies (1, 4)$.

When
$$t = 4$$
, $x = 4(4)^2 = 64$, $y = 8(4) = 32 \implies (64, 32)$.

The coordinates of P and Q are (1, 4) and (64, 32).

b C:
$$y^2 = 16x \Rightarrow y = \sqrt{16x} = \sqrt{16} \sqrt{x} = 4x^{\frac{1}{2}}$$

So
$$y = 4x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 4\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = 2x^{-\frac{1}{2}}$$

So,
$$\frac{dy}{dx} = \frac{2}{\sqrt{x}}$$

At
$$(4t^2, 8t)$$
, $m_T = \frac{dy}{dx} = \frac{2}{\sqrt{4t^2}} = \frac{2}{2t} = \frac{1}{t}$.

Gradient of tangent at $(4t^2, 8t)$ is $m_T = \frac{1}{t}$.

So gradient of normal at $(4t^2, 8t)$ is $m_N = \frac{-1}{\left(\frac{1}{t}\right)} = -t$.

N:
$$y - 8t = -t(x - 4t^2)$$

N:
$$y - 8t = -tx + 4t^3$$

N:
$$xt + y = 4t^3 + 8t$$
.

The equation of the normal to C at $(4t^2, 8t)$ is $xt + y = 4t^3 + 8t$.

c Without loss of generality, from part (a) P has coordinates (1, 4) when $t = \frac{1}{2}$ and Q has coordinates (64, 32) when t = 4.

When
$$t = \frac{1}{2}$$
,

N:
$$x\left(\frac{1}{2}\right) + y = 4\left(\frac{1}{2}\right)^3 + 8\left(\frac{1}{2}\right)$$

N:
$$\frac{1}{2}x + y = \frac{1}{2} + 4$$

N:
$$x + 2y = 1 + 8$$

N:
$$x + 2y - 9 = 0$$

When t = 4,

N:
$$x(4) + y = 4(4)^3 + 8(4)$$

N:
$$4x + y = 256 + 32$$

N:
$$4x + y - 288 = 0$$

d The normals to C at P and at Q are x + 2y - 9 = 0 and 4x + y - 288 = 0

$$N_1$$
: $x + 2y - 9 = 0$ (1)

$$N_2$$
: $4x + y - 288 = 0$ (2)

Multiplying (2) by 2 gives

$$2 \times (2)$$
: $8x + 2y - 576 = 0$ (3)

(3) – **(1)** :
$$7x - 567 = 0$$

$$\Rightarrow 7x = 567 \Rightarrow x = \frac{567}{7} = 81$$

(2)
$$\Rightarrow$$
 $y = 288 - 4(81) = 288 - 324 = -36$

The coordinates of R are (81, -36).

When
$$y = -36$$
, LHS = $y^2 = (-36)^2 = 1296$

When
$$x = 81$$
, RHS = $16x = 16(81) = 1296$

As LHS = RHS, R lies on C.

e The coordinates of O and R are (0, 0) and (81, -36).

$$OR = \sqrt{(81-0)^2 + (-36-0)^2} ?$$

$$= \sqrt{81^2 + 36^2}$$

$$= \sqrt{7857}$$

$$= \sqrt{(81)(97)}$$

$$= \sqrt{81}\sqrt{97}$$

$$= 9\sqrt{97}$$

Hence the exact distance OR is $9\sqrt{97}$ and k = 9.

Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise F, Question 5

Question:

The point $P(at^2, 2at)$ lies on the parabola C with equation $y^2 = 4ax$, where a is a positive constant. The point Q lies on the directrix of C. The point Q also lies on the x-axis.

a State the coordinates of the focus of C and the coordinates of Q.

The tangent to C at P passes through the point Q.

b Find, in terms of a, the two sets of possible coordinates of P.

Solution:

The focus and directrix of a parabola with equation $y^2 = 4ax$, are (a, 0) and x + a = 0 respectively.

a Hence the coordinates of the focus of C are (a, 0).

As Q lies on the x-axis then y = 0 and so Q has coordinates (-a, 0).

b C:
$$y^2 = 4ax \Rightarrow y = \sqrt{4ax} = \sqrt{4} \sqrt{a} \sqrt{x} = 2\sqrt{a} x^{\frac{1}{2}}$$

So
$$y = 2\sqrt{a}x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 2\sqrt{a} \left(\frac{1}{2}\right) x^{-\frac{1}{2}} = \sqrt{a} x^{-\frac{1}{2}}$$

So,
$$\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{x}}$$

At
$$P(at^2, 2at)$$
, $m_T = \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{at^2}} = \frac{\sqrt{a}}{\sqrt{at}} = \frac{1}{t}$.

T:
$$y - 2at = \frac{1}{t}(x - at^2)$$

T:
$$ty - 2at^2 = x - at^2$$

T:
$$ty = x - at^2 + 2at^2$$

T:
$$ty = x + at^2$$

T passes through (-a, 0), so substitute x = -a, y = 0 in **T**.

$$t(0) = -a + at^2 \Rightarrow 0 = -a + at^2 \Rightarrow 0 = -1 + t^2$$

So,
$$t^2 - 1 = 0 \Rightarrow (t - 1)(t + 1) = 0 \Rightarrow t = 1, -1$$

When
$$t = 1$$
, $x = a(1)^2 = a$, $y = 2a(1) = 2a$ $\Rightarrow (a, 2a)$.

When
$$t = -1$$
, $x = a(-1)^2 = a$, $y = 2a(-1) = -2a \Rightarrow (a, -2a)$.

The possible coordinates of P are (a, 2a) or (a, -2a).

Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise F, Question 6

Question:

The point $P(ct, \frac{c}{t})$, c > 0, $t \ne 0$, lies on the rectangular hyperbola H with equation $xy = c^2$.

a Show that the equation of the normal to *H* at *P* is $t^3x - ty = c(t^4 - 1)$.

b Hence, find the equation of the normal n to the curve V with the equation xy = 36 at the point (12, 3). Give your answer in the form ax + by = d, where a, b and d are integers.

The line n meets V again at the point Q.

c Find the coordinates of Q.

Solution:

a
$$H$$
: $xy = c^2 \Rightarrow y = c^2x^{-1}$

$$\frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{x^2}$$

At
$$P(ct, \frac{c}{t})$$
, $m_T = \frac{dy}{dx} = -\frac{c^2}{(ct)^2} = -\frac{c^2}{c^2t^2} = -\frac{1}{t^2}$

Gradient of tangent at $P\left(ct, \frac{c}{t}\right)$ is $m_T = -\frac{1}{t^2}$.

So gradient of normal at $P\left(ct, \frac{c}{t}\right)$ is $m_N = \frac{-1}{\left(-\frac{1}{t^2}\right)} = t^2$.

N:
$$y - \frac{c}{t} = t^2(x - ct)$$
 (Now multiply both sides by *t*.)

N:
$$ty - c = t^3(x - ct)$$

N:
$$ty - c = t^3x - ct^4$$

N:
$$ct^4 - c = t^3x - ty$$

N:
$$t^3x - ty = ct^4 - c$$

N:
$$t^3x - ty = c(t^4 - 1)$$

The equation of the normal to *H* at *P* is $t^3x - ty = c(t^4 - 1)$.

b Comparing xy = 36 with $xy = c^2$ gives c = 6 and comparing the point (12, 3) with $\left(ct, \frac{c}{t}\right)$ gives

$$ct = 12 \Rightarrow (6)t = 12 \Rightarrow t = 2$$
. Therefore,

$$n: (2)^3 x - (2)y = 6((2)^4 - 1)$$

$$n: 8x - 2y = 6(15)$$

$$n: 8x - 2y = 90$$

$$n: 4x - y = 45$$

An equation for *n* is 4x - y = 45.

$$4x - y = 45$$
 (1)

$$xy = 36$$

(2)

Rearranging (2) gives

$$y = \frac{36}{x}$$

Substituting this equation into (1) gives

$$4x - \left(\frac{36}{x}\right) = 45$$

Multiplying both sides by x gives

$$4x^2 - 36 = 45x$$

$$4x^2 - 45x - 36 =$$

$$4x^2 - 45x - 36 = 0$$
$$(x - 12)(4x + 3) = 0$$

$$x = 12, -\frac{3}{4}$$

It is already known that x = 12. So at Q, $x = -\frac{3}{4}$.

Substituting $x = -\frac{3}{4}$ into $y = \frac{36}{x}$ gives

$$y = \frac{36}{\left(-\frac{3}{4}\right)} = -36\left(\frac{4}{3}\right) = -48.$$

Hence the coordinates of Q are $\left(-\frac{3}{4}, -48\right)$.

Quadratic Equations Exercise F, Question 7

Question:

A rectangular hyperbola H has equation xy = 9. The lines l_1 and l_2 are tangents to H. The gradients of l_1 and l_2 are both $-\frac{1}{4}$. Find the equations of l_1 and l_2 .

Solution:

$$H: xy = 9 \Rightarrow y = 9x^{-1}$$

$$\frac{dy}{dx} = -9x^{-2} = -\frac{9}{x^2}$$

Gradients of tangent lines l_1 and l_2 are both $-\frac{1}{4}$ implies

$$-\frac{9}{x^2} = -\frac{1}{4}$$

$$\Rightarrow x^2 = 36$$

$$\Rightarrow x = \pm \sqrt{36}$$
$$\Rightarrow x = \pm 6$$

$$\Rightarrow x = \pm 6$$

When
$$x = 6$$
, $6y = 9$ $\Rightarrow y = \frac{9}{6} = \frac{3}{2}$ $\Rightarrow \left(6, \frac{3}{2}\right)$.

When
$$x = -6$$
, $-6y = 9 \implies y = \frac{9}{-6} = -\frac{3}{2} \implies \left(-6, -\frac{3}{2}\right)$.

At
$$\left(6, \frac{3}{2}\right)$$
, $m_T = -\frac{1}{4}$ and

T:
$$y - \frac{3}{2} = -\frac{1}{4}(x - 6)$$

T:
$$4y - 6 = -1(x - 6)$$

T:
$$4y - 6 = -x + 6$$

T:
$$x + 4y - 12 = 0$$

At
$$\left(-6, -\frac{3}{2}\right)$$
, $m_T = -\frac{1}{4}$ and

T:
$$y + \frac{3}{2} = -\frac{1}{4}(x+6)$$

T:
$$4y + 6 = -1(x + 6)$$

T:
$$4y + 6 = -x - 6$$

T:
$$x + 4y + 12 = 0$$

The equations for l_1 and l_2 are x + 4y - 12 = 0 and x + 4y + 12 = 0.

Quadratic Equations Exercise F, Question 8

Question:

The point *P* lies on the rectangular hyperbola $xy = c^2$, where c > 0. The tangent to the rectangular hyperbola at the point $P\left(ct, \frac{c}{t}\right)$, t > 0, cuts the *x*-axis at the point *X* and cuts the *y*-axis at the point *Y*.

a Find, in terms of c and t, the coordinates of X and Y.

b Given that the area of the triangle OXY is 144, find the exact value of c.

Solution:

a *H*:
$$xy = c^2 \Rightarrow y = c^2 x^{-1}$$

$$\frac{dy}{dx} = -c^2x^{-2} = -\frac{c^2}{r^2}$$

At
$$P(ct, \frac{c}{t})$$
, $m_T = \frac{dy}{dx} = -\frac{c^2}{(ct)^2} = -\frac{c^2}{c^2t^2} = -\frac{1}{t^2}$

T:
$$y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)$$
 (Now multiply both sides by t^2 .)

T:
$$t^2y - ct = -(x - ct)$$

T:
$$t^2v - ct = -x + ct$$

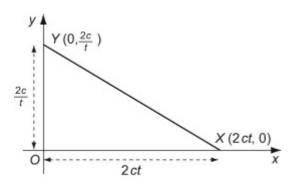
T:
$$x + t^2 y = 2ct$$

T cuts x-axis
$$\Rightarrow y = 0 \Rightarrow x + t^2(0) = 2ct \Rightarrow x = 2ct$$

T cuts y-axis
$$\Rightarrow x = 0 \Rightarrow 0 + t^2y = 2ct \Rightarrow y = \frac{2ct}{t^2} = \frac{2c}{t}$$

So the coordinates are X(2ct, 0) and $Y(0, \frac{2c}{t})$.

b



Using the sketch, are $\Delta OXY = \frac{1}{2}(2ct)\left(\frac{2c}{t}\right) = \frac{4c^2t}{2t} = 2c^2$

As area $\triangle OXY = 144$, then $2c^2 = 144 \implies c^2 = 72$

As
$$c > 0$$
, $c = \sqrt{72} = \sqrt{36}\sqrt{2} = 6\sqrt{2}$.

Hence the exact value of c is $6\sqrt{2}$.

Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise F, Question 9

Question:

The points $P(4at^2, 4at)$ and $Q(16at^2, 8at)$ lie on the parabola C with equation $y^2 = 4ax$, where a is a positive constant.

a Show that an equation of the tangent to C at P is $2ty = x + 4at^2$.

b Hence, write down the equation of the tangent to C at Q.

The tangent to C at P meets the tangent to C at Q at the point R.

c Find, in terms of a and t, the coordinates of R.

Solution:

a C:
$$y^2 = 4ax \Rightarrow y = \pm \sqrt{4ax} = \sqrt{4} \sqrt{a} \sqrt{x} = 2\sqrt{a} x^{\frac{1}{2}}$$

So
$$y = 2\sqrt{a}x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 2\sqrt{a} \left(\frac{1}{2}\right) x^{-\frac{1}{2}} = \sqrt{a} x^{-\frac{1}{2}}$$

So,
$$\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{x}}$$

At
$$P(4at^2, 4at), m_T = \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{4at^2}} = \frac{\sqrt{a}}{2\sqrt{a}t} = \frac{1}{2t}$$
.

T:
$$y - 4at = \frac{1}{2t}(x - 4at^2)$$

T:
$$2ty - 8at^2 = x - 4at^2$$

T:
$$2ty = x - 4at^2 + 8at^2$$

T:
$$2ty = x + 4at^2$$

The equation of the tangent to C at $P(4at^2, 4at)$ is $2ty = x + 4at^2$.

b P has mapped onto Q by replacing t by 2t, ie. $t \rightarrow 2t$

So,
$$P(4at^2, 4at) \rightarrow Q(16at^2, 8at) = Q(4a(2t)^2, 4a(2t))$$

At *Q*, **T** becomes
$$2(2t)y = x + 4a(2t)^2$$

T:
$$2(2t)y = x + 4a(2t)^2$$

T:
$$4ty = x + 4a(4t^2)$$

T:
$$4ty = x + 16at^2$$

The equation of the tangent to C at $Q(16at^2, 8at)$ is $4ty = x + 16at^2$.

c
$$T_P$$
: $2ty = x + 4at^2$ (1)

$$T_Q$$
: $4ty = x + 16at^2$ (2)

$$(2) - (1)$$
 gives

$$2ty = 12at^2$$

Hence,
$$y = \frac{12at^2}{2t} = 6at$$
.

Substituting this into (1) gives,

$$2t(6at) = x + 4at^2$$

$$12at^2 = x + 4at^2$$

$$12at^2 - 4at^2 = x$$

Hence,
$$x = 8at^2$$
.

The coordinates of R are $(8at^2, 6at)$.

Edexcel AS and A Level Modular Mathematics

Quadratic Equations Exercise F, Question 10

Question:

A rectangular hyperbola *H* has Cartesian equation $xy = c^2$, c > 0. The point $\left(ct, \frac{c}{t}\right)$, where $t \neq 0$, t > 0 is a general point on *H*.

a Show that an equation an equation of the tangent to H at $\left(ct, \frac{c}{t}\right)$ is $x + t^2y = 2ct$.

The point P lies on H. The tangent to H at P cuts the x-axis at the point X with coordinates (2a, 0), where a is a constant.

b Use the answer to part **a** to show that *P* has coordinates $\left(a, \frac{c^2}{a}\right)$.

The point Q, which lies on H, has x-coordinate 2a.

c Find the *y*-coordinate of *Q*.

d Hence, find the equation of the line OQ, where O is the origin.

The lines OQ and XP meet at point R.

e Find, in terms of *a*, the *x*-coordinate of *R*.

Given that the line OQ is perpendicular to the line XP,

f Show that $c^2 = 2a^2$.

g find, in terms of a, the y-coordinate of R.

Solution:

a *H*:
$$xy = c^2 \Rightarrow y = c^2 x^{-1}$$

$$\frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{x^2}$$

At
$$\left(ct, \frac{c}{t}\right)$$
, $m_T = \frac{dy}{dx} = -\frac{c^2}{(ct)^2} = -\frac{c^2}{c^2t^2} = -\frac{1}{t^2}$

T: $y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)$ (Now multiply both sides by t^2 .)

T:
$$t^2y - ct = -(x - ct)$$

$$\mathbf{T:} \ t^2 y - ct = -x + ct$$

T:
$$x + t^2y = 2ct$$

An equation of a tangent to H at $\left(ct, \frac{c}{t}\right)$ is $x + t^2y = 2ct$.

b T passes through X(2a, 0), so substitute x = 2a, y = 0 into T.

$$(2a) + t^{2}(0) = 2ct \Rightarrow 2a = 2ct \Rightarrow \frac{2a}{2c} = t \Rightarrow t = \frac{a}{c}$$

Substitute $t = \frac{a}{c}$ into $\left(ct, \frac{c}{t}\right)$ gives

$$P\left(c\left(\frac{a}{c}\right), \frac{c}{\left(\frac{a}{c}\right)}\right) = P\left(a, \frac{c^2}{a}\right).$$

Hence *P* has coordinates $P\left(a, \frac{c^2}{a}\right)$.

c Substituting x = 2a into the curve H gives

$$(2a)y = c^2 \Rightarrow y = \frac{c^2}{2a}$$
.

The y-coordinate of Q is $y = \frac{c^2}{2a}$.

d The coordinates of Q and Q are (0, 0) and $\left(2a, \frac{c^2}{2a}\right)$.

$$m_{OQ} = \frac{\frac{c^2}{2a} - 0}{2a - 0} = \frac{c^2}{2a(2a)} = \frac{c^2}{4a^2}$$

$$OQ: y - 0 = \frac{c^2}{4a^2}(x - 0)$$

$$OQ: y = \frac{c^2x}{4a^2}$$
. (1)

The equation of OQ is $y = \frac{c^2x}{4a^2}$.

e The coordinates of *X* and *P* are (2a, 0) and $\left(a, \frac{c^2}{a}\right)$.

$$m_{XP} = \frac{\frac{c^2}{a} - 0}{\frac{a}{a - 2a}} = \frac{\frac{c^2}{a}}{\frac{-a}{a}} = -\frac{c^2}{\frac{a^2}{a^2}}$$

$$XP: \ y - 0 = -\frac{c^2}{a^2}(x - 2a)$$

XP:
$$y = -\frac{c^2}{a^2}(x - 2a)$$
 (2)

Substituting (1) into (2) gives,

$$\frac{c^2x}{4a^2} = -\frac{c^2}{a^2}(x - 2a)$$

Cancelling $\frac{c^2}{a^2}$ gives,

$$\frac{x}{4} = -(x - 2a)$$

$$\frac{x}{4} = -x + 2a$$

$$\frac{5x}{4} = 2a$$

$$x = \frac{4(2a)}{5} = \frac{8a}{5}$$

The *x*-coordinate of *R* is $\frac{8a}{5}$.

f From earlier parts, $m_{OQ} = \frac{c^2}{4a^2}$ and $m_{XP} = -\frac{c^2}{a^2}$

OP is perpendicular to $XP \Rightarrow m_{OQ} \times m_{XP} = -1$, gives

$$m_{OQ} \times m_{XP} = \left(\frac{c^2}{4a^2}\right) \left(-\frac{c^2}{a^2}\right) = \frac{-c^4}{4a^4} = -1$$

$$-c^{4} = -4a^{4} \Rightarrow c^{4} = 4a^{4} \Rightarrow (c^{2})^{2} = 4a^{4}$$

$$c^2 = \sqrt{4a^4} = \sqrt{4}\sqrt{a^4} = 2a^2.$$

Hence, $c^2 = 2a^2$, as required.

g At $R, x = \frac{8a}{5}$. Substituting $x = \frac{8a}{5}$ into $y = \frac{c^2x}{4a^2}$ gives,

$$y = \frac{c^2}{4a^2} \left(\frac{8a}{5}\right) = \frac{8ac^2}{20a^2}$$

and using the $c^2 = 2a^2$ gives,

$$y = \frac{8a(2a^2)}{20a^2} = \frac{16a^3}{20a^2} = \frac{4a}{5}$$
.

The y-coordinate of R is $\frac{4a}{5}$.