Numerical solutions of equations Exercise A, Question 1

Question:

Use interval bisection to find the positive square root of $x^2 - 7 = 0$, correct to one decimal place.

Solution:

 $x^2 - 7 = 0$

So roots lies between 2 and 3 as f(2) = -3 and f(2) = + Using table method.

а	f(<i>a</i>)	b	f(b)	$\frac{a+b}{2}$	$\frac{f(a+b)}{2}$
2	-3	3	+2	2.5	-0.75
2.5	-0.75	3	+2	2.75	0.5625
2.5	-0.75	2.75	0.5625	2.625	-0.109375
2.625	-0.109375	2.75	0.5625	2.6875	0.2226562
2.625	-0.109375	2.6875	0.2226562	2.65625	0.055664
2.625	-0.109375	2.65625	0.055664	2.640625	-0.0270996

Hence $x^2 - 7 = 0$ when x = 2.6 to 1 decimal place

Numerical solutions of equations Exercise A, Question 2

Question:

a Show that one root of the equation $x^3 - 7x + 2 = 0$ lies in the interval [2, 3].

 ${\bf b}$ Use interval bisection to find the root correct to two decimal places.

Solution:

a f(2) = 8 - 14 + 2 = -4 $f(x) = x^3 - 7x + 2$

$$f(3) = 27 - 21 + 2 = +8$$

Hence change of sign, implies roots between 2 and 3.

b Using table method.

а	f(<i>a</i>)	b	f(b)	$\frac{a+b}{2}$	$\frac{\mathbf{f}(a+b)}{2}$
2	-4	3	+8	2.5	0.125
2	-4	2.5	0.125	2.25	-2.359375
2.25	-2.359375	2.5	0.125	2.375	-1.2285156
2.375	-1.2285156	2.5	0.125	2.4375	-0.5803222
2.4375	-0.5803222	2.5	0.125	2.46875	-0.2348938
2.46875	-0.2348938	2.5	0.125	2.484375	-0.0567665
2.484375	-0.0567665	2.5	0.125	2.4921875	0.0336604
2.484375	-0.0567665	2.4921875	0.0336604	2.4882813	-0.0116673

Hence x = 2.49 to 2 decimal places.

Numerical solutions of equations Exercise A, Question 3

Question:

a Show that the largest positive root of the equation $0 = x^3 + 2x^2 - 8x - 3$ lies in the interval [2, 3].

 ${\bf b}$ Use interval bisection to find this root correct to one decimal place.

Solution:

a f(2) = 8 + 8 - 16 - 3 = -3 $f(x) = x^3 + 2x^2 - 8x - 3$

 $\mathbf{f}(3) = 27 + 18 - 24 - 3 = 18$

Change of sign implies root in interval [2,3]

b

а	f(<i>a</i>)	b	f(b)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$
2	-3	3	18	2.5	5.125
2	-3	2.5	5.125	2.25	0.51562
2	-3	2.25	0.515625	2.125	-1.37304
2.125	-1.3730469	2.25	0.515625	2.1875	-0.46215

Hence solution = 2.2 to 1 decimal place

Numerical solutions of equations Exercise A, Question 4

Question:

a Show that the equation $f(x) = 1 - 2\sin x$ has one root which lies in the interval [0.5, 0.8].

 \mathbf{b} Use interval bisection four times to find this root. Give your answer correct to one decimal place.

Solution:

a f(0.5) = +0.0411489

f(0.8) = -0.4347121

Change of sign implies root between 0.5 and 0.8

b

а	f(a)	b	f(b)	$\frac{a+b}{2}$	$\frac{\mathbf{f}(a+b)}{2}$
0.5	0.0411489	0.8	-0.4347121	0.65	-0.2103728
0.5	0.0411489	0.65	-0.2103728	0.575	-0.0876695
0.5	0.0411489	0.575	-0.0876696	0.5375	-0.0239802

0.5 to 1 decimal place.

Numerical solutions of equations Exercise A, Question 5

Question:

a Show that the equation $0 = \frac{x}{2} - \frac{1}{x}$, x > 0, has a root in the interval [1, 2].

 ${f b}$ Obtain the root, using interval bisection two times. Give your answer to two significant figures.

Solution:

a f(1) = -0.5 $p = \frac{1}{2} + x - \frac{1}{x}$ f(2) = +0.5

Change of sign implies root between interval [1,2]

b

а	f(<i>a</i>)	b	f(b)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$
1	-0.5	2	+0.5	1.5	0.0833
1	-0.5	1.5	0.083	1.25	-0.175
1.25	-0.175	1.5	0.083	1.375	-0.0397727
1.375	-0.0397727	1.5	0.083	1.4375	0.0230978

Hence x = 1.4 to 2 significant figures

Numerical solutions of equations Exercise A, Question 6

Question:

 $f(x) = 6x - 3^x$

The equation f(x) = 0 has a root between x = 2 and x = 3. Starting with the interval [2, 3] use interval bisection three times to give an approximation to this root.

Solution:

а	f(<i>a</i>)	b	f(b)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$
2	3	3	-9	2.5	-0.588457
2	3	2.5	-0.5884572	2.25	1.65533
2.25	1.6553339	2.5	-0.5884572	2.375	0.66176
2.375	0.6617671	2.5	-0.5884572	2.4375	0.0708
2.4375	0.0709769	2.5	-0.5844572	2.46875	-0.2498
2.4375	0.0709769	2.46875	-0.2498625	2.453125	-0.08726
2.4375	0.0709769	2.453125	-0.0872613	2.4453125	-0.0076

2.4 correct to 1 decimal place.

Numerical solutions of equations Exercise B, Question 1

Question:

a Show that a root of the equation $x^3 - 3x - 5 = 0$ lies in the interval [2, 3].

 ${\bf b}$ Find this root using linear interpolation correct to one decimal place.

Solution:

a f(2) = 8 - 6 - 5 = -3 $f(x) = x^3 - 3x - 5$

f(3) = 27 - 9 - 5 = +13

Change of size therefore root in interval [2, 3]

b Using linear interpolation and similar triangle taking x_1 as the first root.

 $\frac{3 - x_1}{x_1 - 2} = \frac{3}{13} \quad x = \frac{af(b) - bf(a)}{f(b) - f(a)}$

so

 $13(3 - x_1) = 3(x_1 - 2)$ $39 - 13x_1 = 3x_1 - 6$ $16x_1 = 45$ $x_1 = 2.8125 \quad f(x_1) = 8.8098$

Using interval (2, 2.8125)

 $\frac{2.8125 - x_2}{x_2 - 2} = \frac{3}{8.8098}$ $x_2 = 2.606 \quad f(x_2) = 4.880$

Using interval (2, 2.606)

 $\frac{2.606 - x_3}{x_3 - 2} = \frac{3}{4.880}$ $x_2 = 2.375 \quad f(x_2) = 1.276$

Using interval (2, 2.375)

$$\frac{2.375 - x_4}{x_4 - 2} = \frac{3}{1.276}$$
$$x_2 = 2.112 \quad f(x_4) = -1.915$$

Using interval (2.112, 2.375)

 $\frac{2.375 - x_5}{x_5 - 2.112} = \frac{1.915}{1.276}$ $= 2.218 \quad f(x_5) = -0.736$

Using interval (2.218, 2.375)

 $\frac{2.375 - x_6}{x_6 - 2.218} = \frac{0.736}{1.276}$ $= 2.318 \quad f(x_6) = 0.494$

Using interval (2.218, 2.318)

 $\frac{2.318 - x_7}{x_7 - 2.218} = \frac{0.736}{0.494}$ $= 2.25 \quad f(x_7) = -0.229$

2.3 to 1 decimal place.

Numerical solutions of equations Exercise B, Question 2

Question:

a Show that a root of the equation $5x^3 - 8x^2 + 1 = 0$ has a root between x = 1 and x = 2.

 ${\bf b}$ Find this root using linear interpolation correct to one decimal place.

Solution:

a f(1) = 5 - 8 + 1 = -2 $f(x) = 5x^3 - 8x^2 + 1$

f(2) = 40 - 32 + 1 = +9

Therefore root in interval [1, 2] as sign change.

b Using linear interpolation.

 $\frac{2 - x_1}{x_1 - 1} = \frac{2}{9}$ x_1 = 1.818 f(x_1) = 4.612.

Using interval (1, 1.818)

 $\frac{1.818 - x_2}{x_2 - 1} = \frac{2}{4.612}$ $x_2 = 1.570 \quad f(x_2) = 0.647$

Using interval (1, 1.570)

 $\frac{1.570 - x_3}{x_3 - 1} = \frac{2}{0.647}$ $x_3 = 1.139 \quad f(x_3) = -1.984$

Using interval (1.139, 1.570)

 $\frac{1.570 - x_4}{x_4 - 1.139} = \frac{1.984}{0.647}$ $x_4 = 1.447 \quad f(x_4) = -0.590$

Use interval (1.447, 1.570)

$$\frac{1.570 - x_5}{x_5 - 1.447} = \frac{0.590}{0.647}$$

= 1.511 f(x_5) = -0.0005.

Ans 1.5 correct to 1 decimal place.

Numerical solutions of equations Exercise B, Question 3

Question:

a Show that a root of the equation $\frac{3}{x} + 3 = x$ lies in the interval [3, 4].

 ${\bf b}$ Use linear interpolation to find this root correct to one decimal place.

Solution:

a f(3) = 1 $f(x) = \frac{3}{x} + 3 - x$

f(4) = -0.25

Hence root as sign change in interval [3, 4]

b Using linear interpolation

 $\frac{4 - x_1}{x_1 - 3} = \frac{0.25}{1}$ $x_1 = 3.8 \quad f(x_1) = -0.011$

Using interval [3, 3.8]

 $\frac{3.8 - x_2}{x_2 - 3} = \frac{0.0111}{1}$ $x_2 = 3.791 \quad f(x_2) = -0.0004579$

Ans = 3.8 to 1 decimal place

Numerical solutions of equations Exercise B, Question 4

Question:

a Show that a root of the equation $2x \cos x - 1 = 0$ lies in the interval [1, 1.5].

b Find this root using linear interpolation correct to two decimal places.

Solution:

a f(1) = 0.0806

f(1.5) = -0.788

Hence root between (1, 1.5) as sign change

b Using linear interpolation

 $\frac{1.5 - x_1}{x_1 - 1} = \frac{0.788}{1}$ $x_1 = 1.280 \quad f(1.280) = -0.265$

Use interval [1, 1.28]

 $\frac{1.28 - x_2}{x_2 - 1} = \frac{0.265}{1}$ $x_2 = 1.221 \quad f(1.221) = -0.164$

Use interval [1, 1.221]

 $\frac{1.221 - x_2}{x_3 - 1} = \frac{0.164}{1}$ $x_3 = 1.190 \quad f(1.190) = -0.115$

Use interval [1, 1.190]

 $\frac{1.190 - x_4}{x_4 - 1} = \frac{0.115}{1}$ $x_4 = 1.170 \quad \text{f}(1.170) = 0.088$

Use interval [1, 1.170]

$$\frac{1.170 - x_5}{x_5 - 1} = \frac{0.088}{1}$$
$$x_5 = 1.156 \quad f(1.156) = -0.068$$

Root 1.10 to 2 decimal places.

Numerical solutions of equations Exercise B, Question 5

Question:

a Show that the largest possible root of the equation $x^3 - 2x^2 - 3 = 0$ lies in the interval [2, 3].

 ${\bf b}$ Find this root correct to one decimal place using interval interpolation.

Solution:

a f(2) = 8 - 8 - 3 = -3 $f(x) = x^3 - 2x^2 - 3$

f(3) = 27 - 18 - 3 = 6

Hence root lies in interval [2, 3] and $\forall x \in x \ge 3f(x) < 0$.

b Using linear interpolation

$$\frac{3-x_1}{x_1-2} = \frac{6}{3}$$

$$x_1 = 2.333 \quad f(x_1) = -1.185$$

$$\frac{3-x_2}{x_2-2.333} = \frac{6}{1.185}$$

$$x_2 = 2.443 \quad f(x_2) = -0.356$$

$$\frac{3-x_3}{x_3-2.443} = \frac{6}{0.356}$$

$$x_3 = 2.474 \quad f(x_3) = -0.095$$

$$\frac{3-x_4}{x_4-2.474} = \frac{6}{0.095}$$

$$x_4 = 2.482$$

Hence root = 2.5 to 1 d.p

Numerical solutions of equations Exercise B, Question 6

Question:

 $\mathbf{f}(x) = 2^x - 3x - 1$

The equation f(x) = 0 has a root in the interval [3, 4].

Using this interval find an approximation to *x*.

Solution:

Let root be $\boldsymbol{\alpha}$

f(3) = -2f(4) = 3

 $\frac{4-\alpha}{\alpha-3} = \frac{3}{2}$ $\alpha = 3.4$ is the approximation.

Numerical solutions of equations Exercise C, Question 1

Question:

Show that the equation $x^3 - 2x - 1 = 0$ has a root between 1 and 2. Find the root correct to two decimal places using the Newton–Raphson process.

Solution:

f(1) = -2 f(x) = $x^3 - 2x - 1$ f(2) = 3 f(2) = 3 is correct

Hence root in interval [1,2] as sign change

 $f(x) = x^3 - 2x - 1$ $f'(x) = 3x^2 - 2$ Let $x_0 = 2$. Then $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $x_1 = 2 - \frac{3}{10}$ $x_1 = 1.7$ $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ $x_2 = 1.88 - \frac{1.885}{8.6032}$ = 1.661 $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$ $x_3 = 1.661 - \frac{0.2597}{6.2767}$ = 1.6120 $x_4 = 1.620 - \frac{f(1.620)}{f(1.620)}$ f (1.620) $x_4 = 1.62 - \frac{0.0115}{5.8732}$ = 1.618 Solution = 1.62 to 2 decimal places

Numerical solutions of equations Exercise C, Question 2

Question:

Use the Newton–Raphson process to find the positive root of the equation $x^3 + 2x^2 - 6x - 3 = 0$ correct to two decimal places.

Solution:

 $\begin{array}{ll} f(0) & = -3 & f(x) = x^3 + 2x^2 - 6x - 3 \\ f(1) & = 1 + 2 - 6 - 3 = -6 \\ f(2) & = 8 + 8 - 12 - 3 = 1 \end{array}$

Hence root in interval [1,2]

Using Newton Raphson

$$f(x) = x^{3} + 2x^{2} - 6x - 3$$

$$f'(x) = 3x^{2} + 4x - 6$$

$$x_{0} = 2$$
Then $x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$

$$= 2 - \frac{1}{14}$$

$$= 1.92857$$

$$x_{2} = 1.92857 - \frac{0.0404494}{12.872427}$$

$$= 1.92857 - 0.00314$$

$$= 1.9254$$

Root = 1.93 to 2 decimal places.

Numerical solutions of equations Exercise C, Question 3

Question:

Find the smallest positive root of the equation $x^4 + x^2 - 80 = 0$ correct to two decimal places. Use the Newton–Raphson process.

Solution:

 $f(x) = x^{4} + x^{2} - 80$ $f'(x) = 4x^{3} + 2x$ Let $x_{0} = 3$ f(3) = 10So $x_{1} = 3 - \frac{f(x_{0})}{f'(x_{0})}$ $x_{1} = 3 - \frac{10}{114}$ = 2.912Then $x_{2} = 2.912 - \frac{0.1768}{104.388}$ = 2.908

Hence root = 2.91 to 2 decimal places.

Numerical solutions of equations Exercise C, Question 4

Question:

Apply the Newton–Raphson process to find the negative root of the equation $x^3 - 5x + 2 = 0$ correct to two decimal places.

Solution:

Let $x_0 = -2$

 $f(x) = x^{3} - 5x + 2$ $f'(x) = 3x^{2} - 5$ f(0) = 2 f(-1) = -1 + 5 + 2 = 6 f(-2) = -8 + 10 + 2 = 4f(-3) = -27 + 15 + 2 = -10

Hence root between interval [-2,-3]

Then
$$x_1 = -2 - \frac{f(x_0)}{f(x_0)}$$

 $= -2 - \frac{4}{7}$
 $= -2.5714$
 $x_2 = -2.571 - \frac{f(x_1)}{f(x_1)}$
 $= -2.571 - \frac{2.1394}{14.83}$
 $= -2.4267$
 $x_3 = -2.4267 - \frac{0.1570}{12.6662}$
 $= -2.4267 - 0.01234$
 $= -2.439$
 $x_4 = -2.439 - \frac{0.00163}{12.846}$
 $= -2.4391$

Root = -2.44 correct to 2 decimal places.

Numerical solutions of equations Exercise C, Question 5

Question:

Show that the equation $2x^3 - 4x^2 - 1 = 0$ has a root in the interval [2, 3]. Taking 3 as a first approximation to this root, use the Newton–Raphson process to find this root correct to two decimal places.

Solution:

 $\begin{array}{ll} f(x) &= 2x^3 - 4x^2 - 1.\\ f(2) &= 16 - 16 - 1 = -1\\ f(3) &= 54 - 36 - 1 = 17 \end{array}$

Sign change implies root in interval [2,3]

$$f'(x) = 6x^{2} - 8x$$
Let $x_{0} = 3$
Then $x_{1} = 3 - \frac{f(x_{0})}{f'(x_{0})}$

$$= 3 - \frac{17}{30}$$

$$= 2.43$$
 $x_{2} = 2.43 - \frac{f(2.43)}{f'(2.43)}$

$$= 2.43 - \frac{4.078}{16.05}$$

$$= 2.43 - 0.254$$

$$= 2.179$$
 $x_{3} = 2.179 - \frac{f(2.179)}{f'(2.179)}$

$$= 2.179 - \frac{0.6998}{11.056}$$

$$= 2.179 - 0.063296$$

$$= 2.116$$
 $x_{4} = 2.116 - \frac{f(2.116)}{f'(2.116)}$

$$= 2.116 - \frac{0.0388}{9.937} = 2.112$$
 $x_{5} = 2.112 - \frac{f(2.112)}{f'(2.112)}$

$$= 2.112 - \frac{-0.00084}{9.8672}$$

$$= 2.112$$

Ans = 2.11 correct to 2 decimal place.

Numerical solutions of equations Exercise C, Question 6

Question:

 $f(x) = x^3 - 3x^2 + 5x - 4$

Taking 1.4 as a first approximation to a root, *x*, of this equation, use Newton–Raphson process once to obtain a second approximation to *x*. Give your answer to three decimal places.

Solution:

 $f(x) = x^3 - 3x^2 + 5x - 4$ f'(x) = 3x^2 - 6x + 5

Let $x_0 = 1.4$

Using Newton Raphson

 $x_1 = 1.4 - \frac{f(1.4)}{f(1.4)}$ = 1.4 - $\frac{-0.136}{2.48}$ = 1.4 + 0.0548 = 1.455 to 3 decimal places

Numerical solutions of equations Exercise C, Question 7

Question:

Use the Newton–Raphson process twice to find the root of the equation $2x^3 + 5x = 70$ which is near to x = 3. Give your answer to three decimal places.

Solution:

 $f(x) = 2x^3 + 5x - 70$ f'(x) = $6x^2 + 5$

Let $x_0 = 3$

Using Newton Raphson

$$x_{1} = 3 - \frac{f(3)}{f(3)}$$

= $3 - \frac{-1}{59}$
= 3.02
$$x_{2} = 3.02 - \frac{f(3.02)}{f(3.02)}$$

= $3.02 - \frac{0.1872}{59.72}$
- 3.017 to 3 decimal places.

Numerical solutions of equations Exercise D, Question 1

Question:

Given that $f(x) = x^3 - 2x + 2$ has a root in the interval [-1, -2], use interval bisection on the interval [-1, -2] to obtain the root correct to one decimal place.

Solution:

 $\begin{array}{ll} f(x) &= x^3 - 2x + 2 \\ f(-1) &= -1 + 2 + 2 = + 3 \\ f(-2) &= -8 + 4 + 2 = -2 \end{array}$

Hence root in interval [-1, -2] as sign change

а	f(<i>a</i>)	b	f(b)	$\frac{a+b}{2}$	$\frac{\mathbf{f}(a+b)}{2}$
-1	+3	-2	-2	-1.5	+1.625
-1.5	1.625	-2	-2	-1.75	0.141
-1.75	0.141	-2	-2	-1.875	-0.842
-1.75	0.141	-1.875	-0.841	-1.8125	-0.329
-1.75	0.141	-1.8125	-0.329	-1.78125	

Hence solution is -1.8 to 1 decimal place.

Numerical solutions of equations Exercise D, Question 2

Question:

Show that the equation $x^3 - 12x - 7.2 = 0$ has one positive and two negative roots. Obtain the positive root correct to three significant figures using the Newton–Raphson process.

Solution:

 $f(x) = x^3 - 12x - 7.2 = 0$

f(0) = -7.2	f(-1) = 3.8
f(1) = -18.2	f(-2) = 8.8
f(2) = -23.2	f(-3) = 1.8
f(3) = -16.2	f(-4) = -23.2
f(4) = 8.8	

positive root between [3, 4]

negative roots between [0, -1], [-3, -4] Let $x_0 = 4$

Using $x_1 = x_0 - \frac{f(x_0)}{f(x_0)}$

where $f(x) = x^3 - 12x - 7.2$

 $f'(x) = 3x^2 - 12$

So $x_1 = 4 - \frac{8.8}{36}$

 $x_{1} = 3.756 \text{ to } 3d.p.$ $x_{2} = 3.756 - \frac{0.716}{30.322}$ $x_{2} = 3.732$ $x_{3} = 3.732 - \frac{0.011}{30.323}$ $x_{3} = 3.7316$

Hence root = 3.73 to 3 significant figures

Numerical solutions of equations Exercise D, Question 3

Question:

Find, correct to one decimal place, the real root of $x^3 + 2x - 1 = 0$ by using the Newton–Raphson process.

Solution:

 $f(x) = x^{3} + 2x - 1$ f(0) = -1 f(1) = 2

Hence root interval [0, 1]

Using $f(x) = x^3 + 2x - 1$

$$f'(x) = 3x^{2} + 2 \text{ and } x_{0} = 1$$

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$x_{1} = 1 - \frac{2}{5}$$

$$x_{1} = 0.6$$

$$x_{2} = 0.6 - \frac{0.416}{3.08}$$

$$x_{2} = 0.465$$

$$x_{3} = 0.465 - \frac{0.031}{2.647}$$

$$x_{3} = 0.453$$

Hence root is 0.5 to 1decimal place.

Numerical solutions of equations Exercise D, Question 4

Question:

Use the Newton–Raphson process to find the real root of the equation $x^3 + 2x^2 + 4x - 6 = 0$, taking x = 0.9 as the first approximation and carrying out one iteration.

Solution:

 $f(x) = x^{3} + 2x^{2} + 4x - 6$ $f'(x) = 3x^{2} + 4x + 4$ f(0.9) = -0.051 f'(0.9) = 10.03 $x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{1})}$ $= 0.9 - \frac{-0.051}{10.03}$ = 0.905 to 3 decimal places

Numerical solutions of equations Exercise D, Question 5

Question:

Use linear interpolation to find the positive root of the equation $x^3 - 5x + 3 = 0$ correct to one decimal place.

Solution:

 $\begin{array}{ll} f(x) &= x^3 - 5x + 3 \\ f(1) &= -1 \\ f(2) &= +1. \end{array}$

Hence positive root in interval [1, 2] Using linear interpolation and x, as the 1st approximation

 $\begin{array}{l} \frac{2-x_1}{x_1-1} &= \frac{1}{1} \\ 2-x_1 &= x_1-1 \\ 2x_1 &= 3 \\ x_1 &= 1.5 \quad \mathrm{f}(x_1) = 1.125 \end{array}$

Then

$$\frac{2 - x_2}{x_2 - 1.5} = \frac{1}{1.125}$$

$$x_2 = 1.882 \quad f(x_2) = 0.260$$

$$\frac{1.882 - x_2}{x_2 - 1.5} = \frac{0.260}{1.125}$$

$$x_2 = 1.810 \quad f(x_3) = -0.117$$

$$\frac{1.882 - x_4}{x_2 - 1.810} = \frac{0.260}{0.117}$$

$$= 1.832$$

root = 1.8 to 1 decimal place

Numerical solutions of equations Exercise D, Question 6

Question:

$$f(x) = x^3 + x^2 - 6.$$

a Show that the real root of f(x) = 0 lies in the interval [1, 2].

b Use the linear interpolation on the interval [1, 2] to find the first approximation to *x*.

c Use the Newton–Raphson process on f(x) once, starting with your answer to **b**, to find another approximation to *x*, giving your answer correct to two decimal places.

Solution:

a

 $f(x) = x^{3} + x^{2} - 6$ f(1) = -4 f(2) = 6

Hence root in interval [1, 2]

b

$$\frac{2 - x_1}{x_1 - 1} = \frac{6}{4}$$
$$x_1 = 1.4$$

с

$$x_{0} = 1.4$$

$$f(x) = x^{3} + x^{2} - 6$$

$$f'(x) = 3x^{2} + 2x$$

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{1})}$$

$$= 1.4 - \frac{-1.296}{8.68}$$

$$= 1.55 \text{ to 2 decimal places}$$

Numerical solutions of equations Exercise D, Question 7

Question:

The equation $\cos x = \frac{1}{4}x$ has a root in the interval [1.0, 1.4]. Use linear interpolation once in the interval [1.0, 1.4] to find an estimate of the root, giving your answer correct to two decimal places.

Solution:

 $\cos x = \frac{1}{4}x \implies f(x) = \frac{1}{4}x - \cos x$ f(1) = -0.29 f(1.4) = 0.180 $\frac{1.4 - x_1}{x_1 - 1} = \frac{-0.290}{-0.180}$ x₁ = 1.153 x₁ = 1.15 to 2 decimal places

Numerical solutions of equations Exercise D, Question 8

Question:

 $\mathbf{f}(x) = x^3 - 3x - 6$

Use the Newton-Raphson process to find the positive root of this equation correct to two decimal places.

Solution:

 $f(x) = x^{3} - 3x - 6$ f'(x) = 3x^{2} - 3

 $\begin{array}{ll} f(0) &= -5 & f(1) &= -7 \\ f(2) &= -3 & f(3) &= +13 \end{array}$

Hence root in interval [2, 3]

Let $x_0 = 2$

Then

 $x_{1} = x_{0} - \frac{f(x_{0})}{f(x_{1})}$ $= 2 - \frac{-3}{9}$ $x_{1} = 2.333$ $x_{2} = -\frac{4.301}{16.500}$ $x_{2} = 2.297$ $x_{3} = 2.297 - \frac{0.228}{12.828}$ $x_{3} = 2.279$ $x_{4} = 2.279 - \frac{-0.000236}{12.582}$ = 2.279 + 0.000019 $x_{4} = 2.2790$

Ans = 2.28 to 2 decimal places