Exercise A, Question 1

Question:

A two person zero-sum game is represented by the following pay-off matrix for player A.

K.	B plays 1	B plays 2	B plays 3
A plays 1	3	2	3
A plays 2	-2	1	3
A plays 3	4	2	1

- a Determine the play safe strategy for each player.
- b Verify that there is a stable solution for this game and determine the saddle point.

Solution:

a

	B plays 1	B plays 2	B plays 3	Row min	
A plays 1	3	2	3	2	\leftarrow
A plays 2	-2	1	3	-2	
A plays 3	4	2	1	1	
Column max	4	2	3		
		1		,	

A should play 1 (row maximin = 2)

B should play 2 (column minimax = 2)

b row maximin = 2 = column minimax

∴ game is stable

Exercise A, Question 2

Question:

Robert and Steve play a zero-sum game. This game is represented by the following pay-off matrix for Robert.

	Steve plays 1	Steve plays 2	Steve plays 3	Steve plays 4
Robert plays 1	-2	-1	-3	1
Robert plays 2	2	3	1	-2
Robert plays 3	1	1	-1	3

- a Determine the play safe strategy for each player.
- b Verify that there is no stable solution for this game.

Solution:

á

	S plays 1	S plays 2	S plays 3	S plays 4	Row min	
R plays 1	-2	-1	-3	1	-3	W.
R plays 2	2	3	1	-2	-2	
R plays 3	1	1	-1	3	-1	\leftarrow
Column max	2	3	1	3		×
N			1			v

R should play 3 (row maximin = -1)

S should play 3 (column minimax = 1)

b row maximin ≠ column minimax

 $-1 \neq 1$

so game is not stable

Exercise A, Question 3

Question:

A two person zero-sum game is represented by the following pay-off matrix for player A.

		B plays 1	B plays 2	B plays 3
	A plays 1	-3	-2	2
	A plays 2	-1	-1	3
	A plays 3	4	-3	1
Ī	A plays 4	3	-1	-1

a Determine the play safe strategy for each player.

b Verify that there is a stable solution for this game and determine the saddle points.

c State the value of the game to player A.

Solution:

а

	B plays 1	B plays 2	B plays 3	Row min	
A plays 1	-3	-2	2	-3	
A plays 2	-1	-1	3	-1	\leftarrow
A plays 3	4	-3	1	-3	
A plays 4	3	-1	-1	-1	\leftarrow
Column max	4	-1	3		8
		1			

A should play 2 or 4 (row maximin -1)

B should play 2 (column minimax −1)

b Since row maximin = column minimax

$$-1 = -1$$

game is stable

Saddle points are (A2, B2) and (A4, B2).

c Value of the game is -1 to A (if A players 2 or 4 and B plays 2 the value of the game is -1).

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 4

Question:

Claire and David play a two person zero-sum game, which is represented by the following pay-off matrix for Claire.

	D plays 1	D plays 2	D plays 3	D plays 4
C plays 1	7	2	-3	5
C plays 2	4	-1	1	3
C plays 3	-2	5	2	-1
C plays 4	3	-3	-4	2

- a Determine the play safe strategy for each player.
- b Verify that there is no stable solution for this game.
- c State the value of the game for Claire if both players play safe.
- d State the value of the game for David if both players play safe.
- e Determine the pay-off matrix for David.

Solution:

а

	D plays 1	D plays 2	D plays 3	D plays 4	Row min	00
C plays 1	7	2	-3	5	-3	
C plays 2	4	-1	1	3	-1	\leftarrow
C plays 3	-2	5	2	-1	-2	- 7
C plays 4	3	-3	-4	2	-4	
Column max	7	5	2	5		- 00
	·		1			

C plays 2 (row maximin = -1)

D plays 3 (column minimax = 2)

b $-1 \neq 2$

row maximin ≠ column minimax

so no stable solution

- c If C plays 2 and D plays 3, the value of the game is 1 to Claire
- d either since the value of the game is 1 to Claire and it is a zero-sum game, the value of the game must be -1 to David

If C plays 2 and D plays 3 Claire wins 1, so David wins -1

е

	C plays 1	C plays 2	C plays 3	C plays 4
D plays 1	-7	-4	2	-3
D plays 2	-2	1	-5	3
D plays 3	3	-1	-2	4
D plays 4	5	-3	1	-2

Edexcel AS and A Level Modular Mathematics

Exercise A, Question 5

Question:

Hilary and Denis play a two person zero-sum game, which is represented by the following pay-off matrix for Hilary.

	D plays 1	D plays 2	D plays 3	D plays 4	D plays 5
H plays 1	2	1	0	0	2
H plays 2	4	0	0	0	2
H plays 3	1	4	-1	-1	3
H plays 4	1	1	-1	-2	0
H plays 5	0	-2	-3	-3	-1

- a Determine the play safe strategy for each player.
- b Verify that there is a stable solution for this game and state the saddle points.
- c State the value of the game for Hilary if both players play safe.
- d State the value of the game for Denis if both players play safe.
- e Determine the pay-off matrix for Denis.

Solution:

	D plays 1	D plays 2	D plays 3	D plays 4	D plays 5	Row min
H plays 1	2	1	0	0	2	0 ←
H plays 2	4	0	0	0	2	0 ←
H plays 3	1	4	-1	-1	3	-1
H plays 4	1	1	-1	-2	0	-2
H plays 5	0	-2	-3	-3	-1	-3
Column max	4	4	0	0	3	
			1	 		

- a H plays 1 or 2
 - D plays 3 or 4
- b row maximin = column minimax

$$0 = 0$$

so game stable

saddle points (H1, D3) (H2, D3) (H1, D4) (H2, D4)

- c The value of the game to Hilary = 0
- d The value of the game to Denis = 0

е

·					
	H plays 1	H plays 2	H plays 3	H plays 4	H plays 5
D plays 1	-2	-4	-1	-1	0
D plays 2	-1	0	-4	-1	2
D plays 3	0	0	1	1	3
D plays 4	0	0	1	2	3
D plays 5	-2	-2	-3	0	1

Exercise B, Question 1

Question:

	Freya plays 1	Freya plays 2
Ellie plays 1	1	-5
Ellie plays 2	-1	6
Ellie plays 3	3	-3

Ellie and Freya play a zero-sum game, represented by the pay-off matrix for Ellie shown above. Use dominance to reduce the game to a 2×2 game. You must make your reasoning clear.

Solution:

Row 3 dominates row 1 (3 > 1, -3 > -5) so game can be reduced to

Ellie would always choose to	,
play row 3 over row 1	

	Freya plays 1	Freya plays 2
Ellie plays 2	-1	6
Ellie plays 3	3	-3

Exercise B, Question 2

Question:

Doug and Harry play a zero-sum game, represented by the pay-off matrix for Doug shown above. Use dominance to reduce the game to a 2×2 game. You must make your reasoning clear.

Solution:

Column 3 dominates 2 $(-1 \le 2 - 6 \le -3)$

	Harry plays 1	Harry plays 3
Doug plays 1	-5	-1
Doug plays 2	2	-6

Harry would always choose to play 3 over 1

Exercise B, Question 3

Question:

	Nick plays 1	Nick plays 2	Nick plays 3
Chris plays 1	1	2	3
Chris plays 2	-1	-3	1
Chris plays 3	2	-1	5

Chris and Nick play a zero-sum game, represented by the pay-off matrix for Chris shown above. Use dominance to reduce the game to a 2×2 game. You must make your reasoning clear.

Solution:

Row 1 dominates row 2 $(1 \ge -1, 2 \ge -3, 3 \ge 1)$

Chris would always choose to play 1 over 2

Column 1 (or column 2) dominates column 3

$$(1 \le 3, -1 \le 1, 2 \le 5 \text{ or } 2 \le 3, -3 \le 1, -1 \le 5$$

	Nick plays 1	Nick plays 2
Chris plays 1	1	2
Chris plays 3	2	-1

Nick would always choose 1 (or 2) over 3

Exercise B, Question 4

Question:

- a Verify that there is no stable solution.
- b Determine the optimal mixed strategy and the value of the game to A.
- c Determine the optimal mixed strategy and the value of the game to B.

	B plays 1	B plays 2
A plays 1	2	-4
A plays 2	-1	3

Solution:

a

	B plays 1	B plays 2	Row min	
A plays 1	2	-4	-4	
A plays 2	-1	3	-1	\leftarrow
Column max	2	3		
	1			

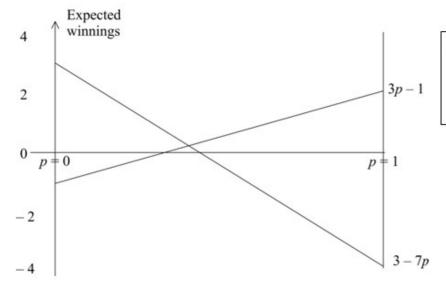
Since $2 \neq -1$ (column minimax \neq row maximin) the game is not stable

 ${f b}$ Let A play 1 with probability p

So A plays 2 with probability (1-p)

If B plays 1 A's expected winning are 2p-1(1-p)=3p-1

If B plays 2 A's expected winnings are 4p+3(1-p)=3-7p



$$3p-1=3-7p$$

$$10p=4$$

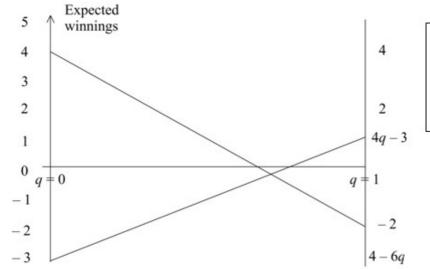
$$p=\frac{2}{5}$$

A should play 1 with probability 2

A should play 2 with probability $\frac{3}{5}$

The value of the game to A is $3(\frac{2}{5}) - 1 = \frac{1}{5}$

c Let B play 1 with probability q so B plays 2 with probability (1-q) If A plays 1 B's expected winnings are -[2q-4(1-q)]=4-6q If A plays 2 B's expected winnings are -[-q+3(1-q)]=4q-3



4-6q = 4q-3 10q = 7 $q = \frac{7}{10}$

B should play 1 with probability $\frac{7}{10}$ B should play 2 with probability $\frac{3}{10}$

The value of the game to B is $4(\frac{3}{10}) - 3 = \frac{-1}{5}$

Exercise B, Question 5

Question:

- a Verify that there is no stable solution.
- b Determine the optimal mixed strategy and the value of the game to A.
- c Determine the optimal mixed strategy and the value of the game to B.

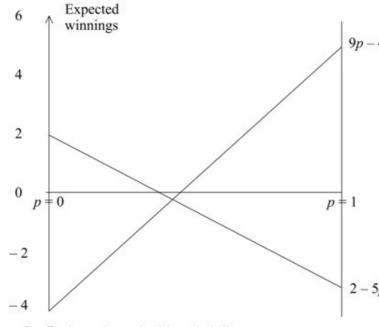
Solution:

a

	B plays 1	B plays 2	Row min	
A plays 1	-3	5	-3	\leftarrow
B plays 2	2	-4	-4	9
Column max	2	5		
	1			

Since $2 \neq -3$ (column minimax \neq row maximin) the game is not stable

b Let A play row 1 with probability p
 So A plays row 2 with probability (1-p)
 If B plays 1 A's expected winnings are -3p+2(1-p) = 2-5p
 If B plays 2 A's expected winnings are 5p-4(1-p) = 9p-4

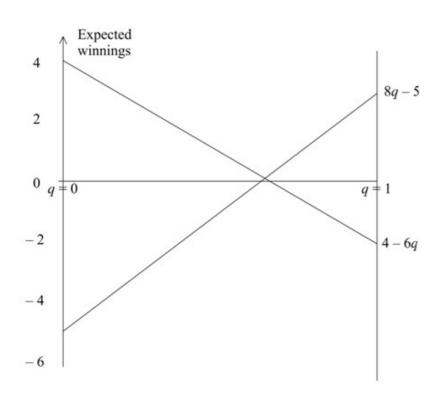


- 2-5p = 9p-4 14p = 6 $p = \frac{3}{7}$
- A should play 1 with probability $\frac{3}{7}$
- A should play 2 with proability $\frac{4}{7}$

The value of the game to

A is
$$2 - 5\left(\frac{3}{7}\right) = \frac{-1}{7}$$

c Let B play column 1 with probability q
So B plays column 2 with probability (1-q)
If A plays 1 B's expected winnings are -[-3q+5(1-q)]=8q-5
If A plays 2 B's expected winning are -[2q-4(1-q)]=4-6q



$$8q - 5 = 4 - 6q$$
$$14q = 9$$
$$q = \frac{9}{14}$$

B should play 1 with probability $\frac{9}{14}$

B should play 2 with probability $\frac{5}{14}$

The value of the game to B is $8(\frac{9}{14}) - 5 = \frac{1}{7}$.

Exercise B, Question 6

Question:

- a Verify that there is no stable solution.
- b Determine the optimal mixed strategy and the value of the game to A.
- c Determine the optimal mixed strategy and the value of the game to B.

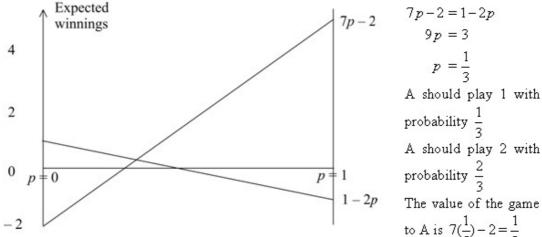
Solution:

a

	B plays 1	B plays 2	Row min	8
A plays 1	5	-1	-1	\leftarrow
A plays 2	-2	1	-2	
Column max	5	1		
		1		8 9

Since $-1 \neq 1$ (column minimax \neq row maximin) the game is not stable

b Let A play row 1 with probability p So A plays rows 2 with probability (1-p)If B plays 1 A's expected winnings are 5p-2(1-p)=7p-2If B plays 2 A's expected winnings are -p+1(1-p)=1-2p



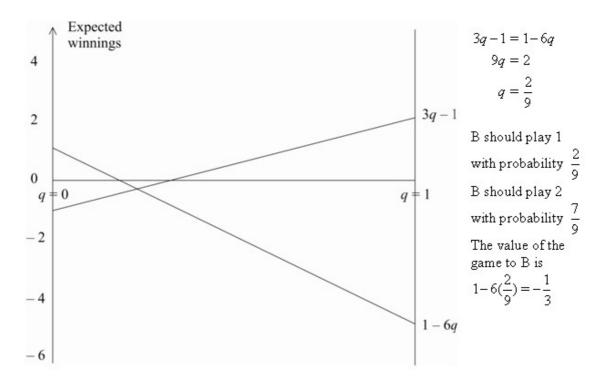
If A plays 2 B's expected winning are -[-2q+1(1-q)] = 3q-1

to A is $7(\frac{1}{3}) - 2 = \frac{1}{3}$ c Let B play column 1 with probability q so B plays column 2 with probability (1-q)If A plays 1 B's expected winnings are -[5q-1(1-q)]=1-6q

A should play 1 with

A should play 2 with

probability $\frac{1}{3}$



Exercise B, Question 7

Question:

- a Verify that there is no stable solution.
- b Determine the optimal mixed strategy and the value of the game to A.
- c Determine the optimal mixed strategy and the value of the game to B.

	B plays 1	B plays 2
A plays 1	-1	3
A plays 2	1	-2

Solution:

a

	B plays 1	B plays 2	Row min	Š
A plays 1	-1	3	-1	\leftarrow
A plays 2	1	-2	-2	
Column max	1	3		
	1			

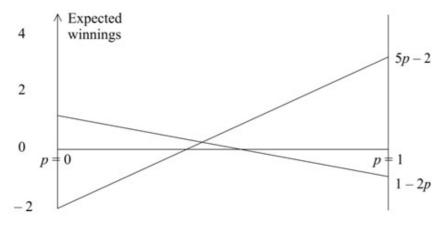
Since $1 \neq -1$ (column minimax \neq row maximin) the game is not stable

 ${f b}$ Let A play 1 with probability p

So A plays 2 with probability (1-p)

If B plays 1 A's expected winnings are -p+(1-p)=1-2p

If B plays 2 A's expected winnings are 3p-2(1-p)=5p-2

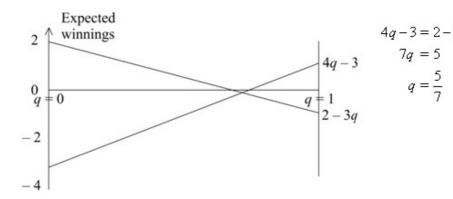


A should play 1 with probability $\frac{3}{7}$

A should play 2 with probability $\frac{4}{7}$

The value of the game to A is $1-2(\frac{3}{7})=\frac{1}{7}$

c Let B play 1 with probability qSo B plays 2 with probability (1-q)If A plays 1 B's expected winnings are -[-q+3(1-q)]=4q-3If A plays 2 B's expected winnings are -[q-2(1-q)]=2-3q



B should play 1 with probability $\frac{5}{7}$ B should play 2 with probability $\frac{2}{7}$ The value of the game to B is $4\left(\frac{5}{7}\right) - 3 = -\frac{1}{7}$

Exercise C, Question 1

Question:

- a Verify that there is no stable solution.
- b Determine the optimal mixed strategy and the value of the game to A.

Solution:

a

1	20			100	9	
		B plays 1	B plays 2	B plays 3	Row min	
	A plays 1	-5	2	2	-5	
	A plays 2	1	-3	-4	-4	\leftarrow
	Column max	1	2	2		
		1				100

Since $1 \neq -4$ (column minimax \neq row maximin) the game is not stable

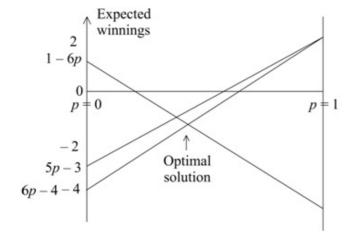
b Let A play 1 with probability p

So A plays 2 with probability (1-p)

If B plays 1 A's expected winnings are -5p+1(1-p)=1-6p

If B plays 2 A's expected winnings are 2p-3(1-p)=5p-3

If B plays 3 A's expected winnings are 2p-4(1-p)=6p-4



$$6p - 4 = 1 - 6p$$

$$12p = 5$$

$$p = \frac{5}{12}$$

A should play 1 with

probability $\frac{5}{12}$

A should play 2 with

probability $\frac{7}{12}$

The value of the game to A is

$$1 - 6(\frac{5}{12}) = -\frac{3}{2}$$

Exercise C, Question 2

Question:

- a Verify that there is no stable solution.
- b Determine the optimal mixed strategy and the value of the game to A.

Solution:

a

•						
		B plays 1	B plays 2	B plays 3	Row min	
	A plays 1	2	6	-2	-2	←
	A plays 2	-1	-4	3	-4	
	Column max	2	6	3		- 7
		1				

Since $2 \neq -2$ (column minimax \neq row maximin) the game is not stable

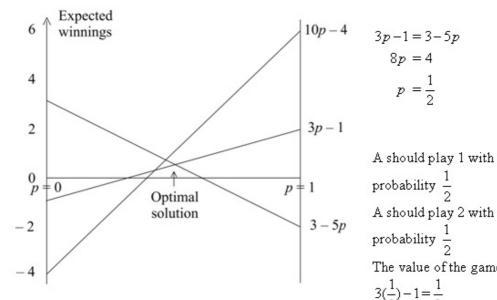
b Let A play 1 with probability p

So A plays 2 with probability (1-p)

If B plays 1 A's expected winnings are 2p - (1-p) = 3p - 1

If B plays 2 A's expected winnings are 6p-4(1-p)=10p-4

If B plays 3 A's expected winnings are -2p + 3(1-p) = 3-5p



$$3p-1 = 3-5p$$
$$8p = 4$$
$$p = \frac{1}{2}$$

A should play 1 with

probability $\frac{1}{2}$

The value of the game to A is

$$3(\frac{1}{2})-1=\frac{1}{2}$$

Exercise C, Question 3

Question:

a Verify that there is no stable solution.

b Determine the optimal mixed strategy and the value of the game to A.

Solution:

a

•						
		B plays 1	B plays 2	B plays 3	Row min	00
	A plays 1	-2	3	6	-2	\leftarrow
	A plays 2	5	1	-4	-4	- 35
	Column max	5	3	6		, , , , , , , , , , , , , , , , , , ,
			1			

Since $3 \neq -2$ (column minimax \neq row maximin) the game is not stable

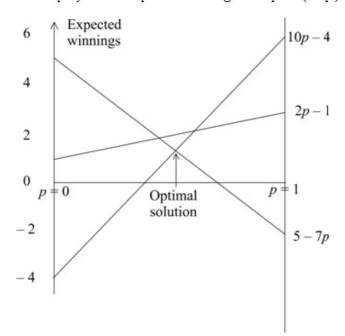
b Let A play 1 with probability p

So A plays 2 with probability (1-p)

If B plays 1 A's expected winnings are -2p+5(1-p)=5-7p

If B plays 2 A's expected winnings are 3p+1(1-p)=2p+1

If B plays 3 A's expected winnings are 6p - 4(1-p) = 10p - 4



$$10p - 4 = 5 - 7p$$
$$17p = 9$$
$$p = \frac{9}{17}$$

A should play 1 with

probability $\frac{9}{17}$

A should play 2 with

probability $\frac{8}{17}$

The value of the game to A is

$$10(\frac{9}{17}) - 4 = \frac{22}{17}$$

Exercise C, Question 4

Question:

- a Verify that there is no stable solution.
- b Determine the optimal mixed strategy and the value of the game to A.

Solution:

a

	B plays 1	B plays 2	B plays 3	Row min	8
A plays 1	5	-2	-4	-4	
A plays 2	-3	1	6	-3	\leftarrow
Column max	5	1	6	. 8	, , , , , , , , , , , , , , , , , , ,
		1			

Since $1 \neq -3$ (column minimax \neq row maximin) the game is not stable

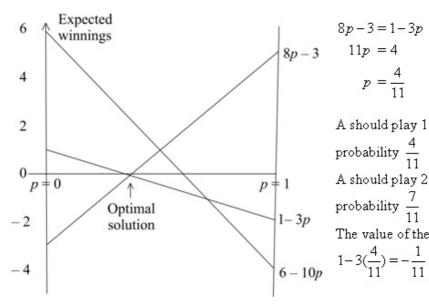
b Let A play 1 with probability p

So A plays 2 with probability (1-p)

If B plays 1 A's expected winnings are 5p-3(1-p)=8p-3

If B plays 2 A's expected winnings are -2p+1(1-p)=1-3p

If B plays 3 A's expected winnings are -4p + 6(1-p) = 6-10p



$$8p - 3 = 1 - 3p$$

$$11p = 4$$

$$p = \frac{4}{11}$$

A should play 1 with

probability $\frac{4}{11}$

A should play 2 with

The value of the game to A is

$$1 - 3(\frac{4}{11}) = -\frac{1}{11}$$

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 5

Question:

a Verify that there is no stable solution.

b Determine the optimal mixed strategy and the value of the game to B.

	B plays 1	B plays 2
A plays 1	-1	1
A plays 2	3	-4
A plays 3	-2	2

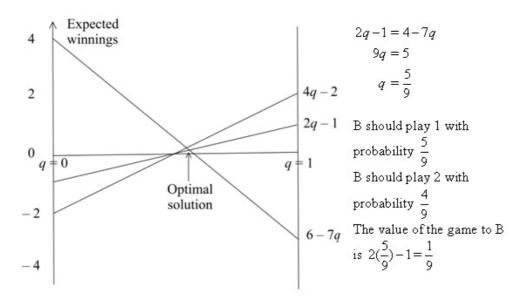
Solution:

а

	B plays 1	B plays 2	Row min	
A plays 1	-1	1	-1	\leftarrow
A plays 2	3	-4	-4	
A plays 3	-2	2	-2	
Column max	3	2		
		1		

Since $2 \neq -1$ (column minimax \neq row maximin) the game is not stable

b Let B play 1 with probability q
So B plays 2 with probability (1-q)
If A plays 1 B's expected winnings are -[-q+1(1-q)] = 2q-1
If A plays 2 B's expected winnings are -[3q-4(1-q)] = 4-7q
If A plays 3 B's expected winnings are -[-2q+2(1-q)] = 4q-2



Edexcel AS and A Level Modular Mathematics

Exercise C, Question 6

Question:

a Verify that there is no stable solution.

b Determine the optimal mixed strategy and the value of the game to B.

	B plays 1	B plays 2
A plays 1	-5	4
A plays 2	3	-3
A plays 3	1	-2

Solution:

а

	B plays 1	B plays 2	Row min	
A plays 1	-5	4	-5	
A plays 2	3	-3	-3	8
A plays 3	1	-2	-2	\leftarrow
Column max	3	4		
	1			

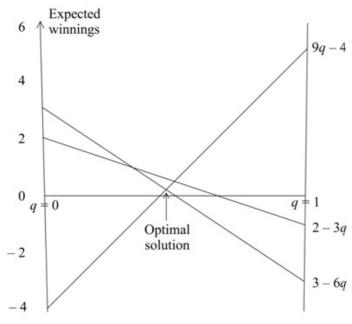
Since $3 \neq -2$ (column minimax \neq row maximin) the game is not stable

b Let B play 1 with probability q So B plays 2 with probability (1-q)

If A plays 1 B's expected winnings are -[-5q+4(1-q)] = 9q-4

If A plays 2 B's expected winnings are -[3q-3(1-q)]=3-6q

If A plays 3 B's expected winnings are -[q-2(1-q)]=2-3q



$$9q - 4 = 3 - 6q$$
$$15q = 7$$
$$q = \frac{7}{15}$$

B should play 1 with probability $\frac{7}{15}$

B should play 2 with

probability $\frac{8}{15}$

The value of the game to B

is $9(\frac{7}{15}) - 4 = \frac{3}{15}$

Edexcel AS and A Level Modular Mathematics

Exercise C, Question 7

Question:

- a Verify that there is no stable solution.
- **b** Determine the optimal mixed strategy and the value of the game to B.

	B plays 1	B plays 2
A plays 1	-3	2
A plays 2	-1	-2
A plays 3	2	-4

Solution:

	B plays 1	B plays 2	Row min	
A plays 1	-3	2	-3	
A plays 2	-1	-2	-2	\leftarrow
A plays 3	2	-4	-4	
Column max	2	2		
	1	1		

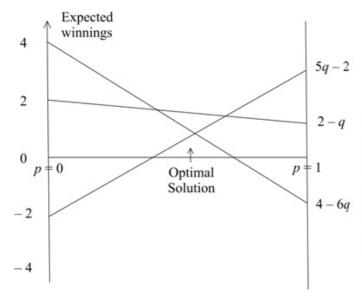
Since $2 \neq -2$ (column minimax \neq row maximin) the game is not stable

b Let B play 1 with probability q So B plays 2 with probability (1-q)

If A plays 1 B's expected winnings are -[-3q+2(1-q)]=5q-2

If A plays 2 B's expected winnings are -[-q-2(1-q)]=2-q

If A plays 3 B's expected winnings are -[2q-4(1-q)]=4-6q



$$5q - 2 = 4 - 6q$$
$$11q = 6$$
$$q = \frac{6}{11}$$

B should play 1 with probability $\frac{6}{11}$

B should play 2 with

4-6q probability $\frac{5}{11}$

The value of the game to B

is
$$5(\frac{6}{11}) - 2 = \frac{8}{11}$$

Exercise C, Question 8

Question:

- a Verify that there is no stable solution.
- b Determine the optimal mixed strategy and the value of the game to B.

B plays 1 B plays 2 A plays 1 A plays 2 A plays 3

Solution:

a

8	B plays 1	B plays 2	Row min	
A plays 1	2	-3	-3	
A plays 2	-2	4	-2	
A plays 3	1	-1	-1	\leftarrow
Column max	2	4	8 8	
	1	N		

Since $2 \neq -1$ (column minimax \neq row maximin) the game is not stable

b Let B play 1 with probability q So B plays 2 with probability (1-q)

If A plays 1 B's expected winnings are -[2q-3(1-q)]=3-5q

If A plays 2 B's expected winnings are -[-2q+4(1-q)]=6q-4

If A plays 3 B's expected winnings are -[q-1(1-q)]=1-2q



6q - 4 = 1 - 2qB should play 1 with probability $\frac{5}{8}$ q = 1 1 - 2q 3 - 5qB should play
probability $\frac{3}{8}$ The value of B should play 2 with The value of the game to B

is $6(\frac{5}{9})-4=-\frac{1}{4}$

Exercise D, Question 1

Question:

Formulate the game below as a linear programming problems for player A, writing the constraints as equalities and clearly defining your variables.

	B plays 1	B plays 2
A plays 1	-1	1
A plays 2	3	-4
A plays 3	-2	2

Solution:

Add 5 to all elements

	B plays 1	B plays 2
A plays 1	4	6
A plays 2	8	1
A plays 3	3	7

Let A play 1 with probability p_1 and A play 2 with probability p_2 and A play 3 with probability p_3 Let the value of the game to A be ν and $V=\nu+5$

Maximise P = V

Subject to
$$4p_1+8p_2+3p_3 \ge V \Rightarrow V-4p_1-8p_2-3p_3+r=0$$
 $6p_1+p_2+7p_3 \ge V \Rightarrow V-6p_2-p_2-7p_3+s=0$ $p_1+p_2+p_3 \le 1 \Rightarrow p_1+p_2+p_3+t=1$ $p_1,p_2,p_3,r,s,t \ge 0$

Exercise D, Question 2

Question:

Formulate the game below as a linear programming problems for player A, writing the constraints as equalities and clearly defining your variables.

	B plays 1	B plays 2	B plays 3
A plays 1	-5	4	1
A plays 2	3	-3	2
A plays 3	1	-2	-1

Solution:

Add 6 to all elements

	B plays 1	B plays 2	B plays 3
A plays 1	1	10	7
A plays 2	9	3	8
A plays 3	7	4	5

Let A play 1 with probability p_1 and A play 2 with probability p_2 and A play 3 with probability p_3 Let the value of the game to A be ν and $V=\nu+6$

Maximise P = V

Subject to
$$\begin{aligned} p_1 + 9 \, p_2 + 7 \, p_3 &\geq V \Rightarrow V - p_1 - 9 \, p_2 - 7 \, p_2 + r &= 0 \\ 10 \, p_1 + 3 \, p_2 + 4 \, p_3 &\geq V \Rightarrow V - 10 \, p_1 - 3 \, p_2 - 4 \, p_3 + s &= 0 \\ 7 \, p_1 + 8 \, p_2 + 5 \, p_3 &\geq V \Rightarrow V - 7 \, p_1 - 8 \, p_2 - 5 \, p_3 + t &= 0 \\ p_1 + p_2 + p_3 &\leq 1 \Rightarrow p_1 + p_2 + p_3 + u &= 1 \\ p_1, p_2, p_3, r, s, t, u &\geq 0 \end{aligned}$$

Exercise D, Question 3

Question:

Formulate the game below as a linear programming problems for player A, writing the constraints as equalities and clearly defining your variables.

	B plays 1	B plays 2	B plays 3
A plays 1	-3	2	-1
A plays 2	-1	-2	1
A plays 3	2	-4	-2

Solution:

Add 5 to all elements

	B plays 1	B plays 2	B plays 3
A plays 1	2	7	4
A plays 2	4	3	6
A plays 3	7	1	3

Let A play 1 with probability p_1

Let A play 2 with probability p2

Let A play 3 with probability p3

Let the value of the game to A be ν and $V = \nu + 5$

Maximise P = V

Subject to

Subject to
$$2p_1 + 4p_2 + 7p_3 \ge V \Rightarrow V - 2p_1 - 4p_2 - 7p_3 + r = 0$$

$$7p_1 + 3p_2 + p_3 \ge V \Rightarrow V - 7p_1 - 3p_2 - p_3 + s = 0$$

$$4p_1 + 6p_2 + 3p_3 \ge V \Rightarrow V - 4p_1 - 6p_2 - 3p_3 + t = 0$$

$$p_1 + p_2 + p_3 \le 1 \Rightarrow p_1 + p_2 + p_3 + u = 1$$

$$p_1, p_2, p_3, r, s, t, u \ge 0$$

Exercise D, Question 4

Question:

Formulate the game below as a linear programming problems for player A, writing the constraints as equalities and clearly defining your variables.

	B plays 1	B plays 2	B plays 3
A plays 1	2	-3	-1
A plays 2	-2	4	1
A plays 3	1	-1	0

Solution:

Add 4 to all elements

	B plays 1	B plays 2	B plays 3
A plays 1	6	1	3
A plays 2	2	8	5
A plays 3	5	3	4

Let A play 1 with probability p1

Let A play 2 with probability p_2

Let A play 3 with probability p3

Let the value of the game to A be ν and $V = \nu + 4$

Maximise P = V

Subject to

Subject to
$$6p_1 + 2p_2 + 5p_3 \ge V \Rightarrow V - 6p_1 - 2p_2 - 5p_3 + r = 0$$

$$p_1 + 8p_2 + 3p_3 \ge V \Rightarrow V - p_1 - 8p_2 - 3p_3 + s = 0$$

$$3p_1 + 5p_2 + 4p_3 \ge V \Rightarrow V - 3p_1 - 5p_2 - 4p_3 + t = 0$$

$$p_1 + p_2 + p_3 \le 1 \Rightarrow p_1 + p_2 + p_3 + u = 1$$

$$p_1, p_2, p_3, r, s, t, u \ge 0$$

Exercise D, Question 5

Question:

Formulate the game below as a linear programming problem for player B, writing the constraints as equalities and clearly defining your variables.

Solution:

	A plays 1	A plays 2			A plays 1	A plays 2
B plays 1	5	-1	Adding	B plays 1	9	3
B plays 2	-2	3	4 to all	B plays 2	2	7
B plays 3	-3	4	elements	B plays 3	1	8

Let B play 1 with probability q_1

Let B play 2 with probability q_2

Let B play 3 with probability q_3

Let the value of the game to B be ν and $V = \nu + 4$

Maximise P = V

Subject to

$$\begin{split} 9q_1+2q_2+q_3 \geq V & V-9q_1-2q_2-q_3+r=0 \\ 3q_1+7q_2+8q_3 \geq V & V-3q_1-7q_2-8q_3+s=0 \\ q_1+q_2+q_3 \leq 1 & q_1+q_2+q_3+t=1 \\ q_1,q_2,q_3,r,s,t \geq 0 \end{split}$$

Exercise D, Question 6

Question:

Formulate the game below as a linear programming problems for player B, writing the constraints as equalities and clearly defining your variables.

	B plays 1	B plays 2	B plays 3
A plays 1	-5	4	1
A plays 2	3	-3	2
A plays 3	1	-2	-1

Solution:

	A plays 1	A plays 2	A plays 3			A plays 1	A plays 2	A plays 3
B plays 1	5	-3	-1	Adding 5	B plays 1	10	2	4
B plays 2	-4	3	2	to all	B plays 2	1	8	7
B plays 3	-1	-2	1	elements	B plays 3	4	3	6

Let B play 1 with probability q_1

Let B play 2 with probability q_2

Let B play 3 with probability q_3

Let the value of the game to B be ν and $V = \nu + 5$

Maximise P = V

Subject to

$$\begin{array}{rl} 333_{1}+q_{2}+4q_{3}\geq V\Rightarrow V-10q_{1}-q_{2}-4q_{3}+r&=0\\ 2q_{1}+8q_{2}+3q_{3}\geq V\Rightarrow V-2q_{1}-8q_{2}-3q_{3}+s&=0\\ 4q_{1}+7q_{2}+6q_{3}\geq V\Rightarrow V-4q_{1}-7q_{2}-6q_{3}+t&=0\\ q_{1}+q_{2}+q_{3}\leq 1\Rightarrow q_{1}+q_{2}+q_{3}+u&=1\\ q_{1},q_{2},q_{3},r,s,t,u\geq 0 \end{array}$$

Exercise D, Question 7

Question:

Formulate the game below as a linear programming problems for player B, writing the constraints as equalities and clearly defining your variables.

	B plays 1	B plays 2	B plays 3
A plays 1	-3	2	-1
A plays 2	-1	-2	1
A plays 3	2	-4	-2

Solution:

	A plays 1	A plays	A plays			A plays 1	A plays	A plays
B plays 1	3	1	-2	Adding 3	B plays 1	6	4	1
B plays 2	-2	2	4	to all	B plays 2	1	5	7
B plays 3	1	-1	2	elements	B plays 3	4	2	5

Let B play 1 with probability q_1

Let B play 2 with probability q_2

Let B play 3 with probability q_3

Let the value of the game to B be ν and $V = \nu + 3$

Maximise P = V

Subject to:

$$\begin{aligned} 6q_1+q_2+4q_3 &\geq V \Rightarrow V-6q_1-q_2-4q_3+r=0 \\ 4q_1+5q_2+2q_3 &\geq V \Rightarrow V-4q_1-5q_2-2q_3+s=0 \\ q_1+7q_2+5q_3 &\geq V \Rightarrow V-q_1-7q_2-5q_3+t=0 \\ q_1+q_2+q_3 &\leq 1 \Rightarrow q_1+q_2+q_3+u=1 \\ q_1,q_2,q_3,r,s,t,u &\geq 0 \end{aligned}$$

Exercise D, Question 8

Question:

Formulate the game below as a linear programming problems for player B, writing the constraints as equalities and clearly defining your variables.

	B plays 1	B plays 2	B plays 3
A plays 1	2	-3	-1
A plays 2	-2	4	1
A plays 3	1	-1	0

Solution:

	A	A	Α			A	A	A
	plays 1	plays 2	plays 3			plays 1	plays 2	plays 3
B plays 1	-2	2	-1	Adding	B plays 1	3	7	4
B plays 2	3	-4	1	5 to all	B plays 2	8	1	6
B plays 3	1	-1	0	elements	B plays 3	6	4	5

Let B play 1 with probability q_1

Let B play 2 with probability q_2

Let B play 3 with probability q_3

Let the value of the game to B be ν and $V = \nu + 5$

Maximise P = V

Subject to:

$$\begin{split} 3q_1 + 8q_2 + 6q_3 &\geq v \Rightarrow V - 3q_1 - 8q_2 - 6q_3 + r &= 0 \\ 7q_1 + q_2 + 4q_3 &\geq V \Rightarrow V - 7q_1 - q_2 - 4q_3 + s &= 0 \\ 4q_1 + 6q_2 + 5q_3 &\geq 1v \Rightarrow V - 4q_1 - 6q_2 - 5q_3 + t &= 0 \\ q_1 + q_2 + q_3 &\leq 1 \Rightarrow q_1 + q_2 + q_3 + u &= 1 \\ q_1, q_2, q_3, r, s, t, u &\geq 0 \end{split}$$

Exercise D, Question 9

Question:

Using your answer to question 1,

- a write down an initial simplex tableau to solve the zero-sum game below, for player A.
- b use the simplex algorithm to determine A's best strategy.

	B plays 1	B plays 2
A plays 1	-1	1
A plays 2	3	-4
A plays 3	-2	2

Solution:

a									
	b.v.	V	p_1	p_2	p_3	r	ε	t	value
	r	1	-4	-8	-3	1	0	0	0
	S	1	-6	-1	-7	0	1	0	0
	t	0	1	1	1	0	0	1	1
	P	-1	0	0	0	0	0	0	0

b

b.v.	V	p_1	p_2	p_3	r	s	t	value	
V	1	-4	-8	-3	1	0	0	0	R1÷1
S	0	-2	7	-4	-1	1	0	0	R2-R1
t	0	(1)	1	1	0	0	1	1	R3 no change
P	0	-4	-8	-3	1	0	0	0	R4+R1

b.v.	V	p_1	p_2	p_3	r	S	t	values	
V	1	0	-4	1	1	0	3	3	R1+4R3
S	0	0	(S)	-2	-1	1	2	2	R2+2R3
p_1	0	1	1	1	0	0	1	1	R3 no change
P	0	0	-4	1	1	0	4	4	R4+4R3

b.v.	V	p_1	p_2	p_3	r	ε	t	value	
V	1	0	0	1_	5_	4	35	44 9	R1+4R2
				9	9	9	9	9	MARCO 1922 - NO
p_2	0	0	1	-2	-1	1	2	2	R2÷9
		. ,		9	9	9	9	9	
p_1	0	1	0	11	1	-1	7	7	R3-R2
70	8	8 4		9	9	9	9	9	
P	0	0	0	1	5	4	35	44	R4+4R2
				9	9	9	9	9	

$$V = \frac{44}{9} \text{ so } v = \frac{44}{9} - 5 = \frac{-1}{9} \quad p_1 = \frac{7}{9} \quad p_2 = \frac{2}{9} \quad p_3 = 0$$

 $V = \frac{44}{9} \text{ so } v = \frac{44}{9} - 5 = \frac{-1}{9} \quad p_1 = \frac{7}{9} \quad p_2 = \frac{2}{9} \quad p_3 = 0$ A should play 1 with probability $\frac{7}{9}$, play 2 with probability $\frac{2}{9}$ and play 3 never

Exercise D, Question 10

Question:

Using your answer to question 5,

- a write down an initial simplex tableau to solve the zero-sum game below, for player B
- b use the simplex algorithm to determine B's best strategy.

Solution:

a

b.v.	V	q_1	q_2	q_3	r	S	t	value
r	1	-9	-2	-1	1	0	0	0
S	1	-3	-7	-8	0	1	0	0
t	0	1	1	1	0	0	1	1
P	-1	0	0	0	0	0	0	0

b

b.v.	V	q_1	q_2	q_3	r	S	t	value	Row operations
V	1	-9	-2	-1	1	0	0	0	R2÷1
S	0	0	-5	-7	-1	1	0	0	R2-R1
t	0	1	1	1	0	0	1	1	R3 no change
P	0	-9	-2	-1	1	0	0	0	R4+R1

b.v.	V	q_1	q_2	q_3	r	s	t	value	Row operations
ν	1	0	-19	-23	<u>-1</u>	3	0	0	R1+9R2
			2	2	2	2		8	
q_1	0	1	-5	-7	-1	1	0	0	R2÷6
870	3 3		$\frac{-5}{6}$	6	6	6		8	
t	0	0	11	(13)	1	-1	1	1	R3-R2
			6	6	6	6			
P	0	0	-19	-23	-1	3	0	0	R4+9R2
			2	2	2	2			

b.v.	V	q_1	q_2	q_3	r	s	t	value	Row operations
ν	1	0	3	0	5	8	69	69	$R1 + \frac{23}{8}$
S		8 %	13		13	13	13	13	2
q_1	0	1	2	0	-1	1	7	7	R2+7R3
			13		13	13	13	13	6
q_3	0	0	11	1	1	-1	6	6	$R3 \div \frac{15}{5}$
			13		13	13	13	13	6
P	0	0	3	0	5	8	69	69	$R4 + \frac{23}{8}R3$
			13		13	13	13	13	2

$$V = \frac{69}{13} \text{ so } V = \frac{69}{13} - 4 = \frac{17}{13} \quad q_1 = \frac{7}{13} \quad q_2 = 0 \quad q_3 = \frac{6}{13}$$

B should play 1 with probability $\frac{7}{13}$, play 2 never and play 3 with probability $\frac{6}{13}$

Exercise D, Question 11

Question:

	B plays 1	B plays 2	B plays 3
A plays 1	-5	4	1
A plays 2	3	-3	2
A plays 3	1	-2	-1

Using your answer to question 2,

- a write down an initial simplex tableau to solve the zero-sum game, for player A,
- b use the simplex algorithm to determine A's best strategy.

Using your answer to question 6,

- c write down an initial simplex tableau to solve the zero-sum game, for player B,
- d use the simplex algorithm to determine B's best strategy.

a

b.v.	V	p_1	p_2	p_3	r	s	t	24	value
r	(1)	-1	-9	-7	1	0	0	0	0
S	1	-10	-3	-4	0	1	0	0	0
t	1	-7	-8	-5	0	0	1	0	0
и	0	1	1	1	0	0	0	1	1
P	-1	0	0	0	0	0	0	0	0

b

b.v.	V	p_1	p_2	p_3	r	s	t	и	value	Row operations
V	1	-1	-9	-7	1	0	0	0	0	R1÷1
S	0	-9	(6)	3	-1	1	0	0	0	R2-R1
t	0	-6	1	2	-1	0	1	0	0	R3-R1
и	0	1	1	1	0	0	0	1	1	R4 no change
P	0	-1	-9	-7	1	0	0	0	0	R5+R1

b.v.	V	p_1	p_2	p_3	r	s	t	и	value	Row operations
V	1	$\frac{-29}{2}$	0	<u>-5</u> 2	$\frac{-1}{2}$	$\frac{3}{2}$	0	0	0	R1+9R2
p_2	0	$\frac{-3}{2}$	1	$\frac{1}{2}$	$\frac{-1}{6}$	$\frac{1}{6}$	0	0	0	R2÷6
t	0	-9 2	0	$\frac{3}{2}$	<u>-5</u>	$\frac{-1}{6}$	1	0	0	R3-R2
и	0	(<u>5</u>)	0	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{-1}{6}$	0	1	1	R4-R2
P	0	$\frac{-29}{2}$	0	-5 2	$\frac{-1}{2}$	$\frac{3}{2}$	0	0	0	R5+9R2

b.v.	V	p_1	p_2	p_3	r	s	t	и	value	Row operations
V	1	0	0	2 5	7 15	8 15	0	29 5	29 5	$R1 + \frac{29}{2}R4$
p_2	0	0	1	4 5	$\frac{-1}{15}$	$\frac{1}{15}$	0	3 5	3 5	$R2 + \frac{3}{2}R4$
t	0	0	0	12 5	<u>-8</u> 15	$\frac{-7}{15}$	1	9 5	9 5	$R3 + \frac{9}{2}R4$
p_1	0	1	0	1 5	$\frac{1}{15}$	$\frac{-1}{15}$	0	2 5	2 5	$R4 \div \frac{5}{2}$
Р	0	0	0	2 5	7 15	8 15	0	29 5	29 5	$R5 + \frac{29}{2}R4$

$$V = \frac{29}{5}$$
, so $v = \frac{29}{5} - 6 = \frac{-1}{5}$, $p_1 = \frac{2}{5}$ $p_2 = \frac{3}{5}$ $p_3 = 0$

A should play 1 with probability $\frac{2}{5}$

A should play 2 with probability $\frac{3}{5}$

A should play 3 never

c

b.v.	V	q_1	q_2	q_3	r	s	t	и	value
r	(1)	-10	-1	-4	1	0	0	0	0
S	1	-2	-8	-3	0	1	0	0	0
t	1	-4	-7	-6	0	0	1	0	0
24	0	1	1	1	0	0	0	1	1
P	-1	0	0	0	0	0	0	0	0

d

b.v.	V	q_1	q_2	q_3	r	S	t	и	value	Row operations
V	1	-10	-1	-4	1	0	0	0	0	R1÷1
S	0	8	-7	1	-1	1	0	0	0	R2-R1
t	0	6	-6	-2	-1	0	1	0	0	R3-R1
и	0	1	1	1	0	0	0	1	1	R4 no change
P	0	-10	-1	-4	1	0	0	0	0	R5+R1

b.v.	V	q_1	q_2	q_3	r	s	t	и	value	Row operations
V	1	0	-39 4	$\frac{-11}{4}$	$\frac{-1}{4}$	<u>5</u> 4	0	0	0	R1+10R2
q_1	0	1	-7 8	1/8	$\frac{-1}{8}$	1/8	0	0	0	R2÷8
Ĺ	0	0	$\frac{-3}{4}$	$\frac{-11}{4}$	$\frac{-1}{4}$	$\frac{-3}{4}$	1	0	0	R3-6R2
и	0	0	$\frac{15}{8}$	7 8	1/8	$\frac{-1}{8}$	0	1	1	R4-R2
P	0	0	-39 4	$\frac{-11}{4}$	$\frac{-1}{4}$	5 4	0	0	0	R5+10R2

b.v.	V	q_1	q_2	q_3	r	s	t	и	value	Row operations
V	1	0	0	9 5	2 5	3 5	0	26 5	26 5	$R1 + \frac{39}{4}R4$
q_1	0	1	0	8 15	$\frac{-1}{15}$	$\frac{1}{15}$	0	$\frac{7}{15}$	7 15	$R2 + \frac{7}{8}R4$
t	0	0	0	<u>-6</u> 5	$\frac{-1}{5}$	$\frac{-4}{5}$	1	2 5	6 15	$R3 + \frac{3}{4}R4$
q_2	0	0	1	7 15	1 15	$\frac{-1}{15}$	0	8 15	8 15	$R4 \div \frac{15}{8}$
P	0	0	0	aln	2 5	3 5	0	26 5	26 5	$R5 + \frac{39}{4}R4$

$$V = \frac{26}{5}$$
, so $v = \frac{26}{5} - 5 = \frac{1}{5}$ $q_1 = \frac{7}{15}$ $q_2 = \frac{8}{15}$ $q_3 = 0$

B should play 1 with probability $\frac{7}{15}$

B should play 2 with probability $\frac{8}{15}$

B should play 3 never

[©] Pearson Education Ltd 2010

Exercise D, Question 12

Question:

	B plays 1	B plays 2	B plays 3
A plays 1	-3	2	-1
A plays 2	-1	-2	1
A plays 3	2	-4	-2

Using your answer to question 3,

a write down an initial simplex tableau to solve the zero-sum game, for player A,

b use the simplex algorithm to determine A's best strategy.

Using your answer to question 7,

c write down an initial simplex tableau to solve the zero-sum game, for player B,

d use the simplex algorithm to determine B's best strategy.

a

b.v.	V	p_1	p_2	p_3	r	s	t	и	value
r	1	-2	-4	-7	1	0	0	0	0
S	1	-7	-3	-1	0	1	0	0	0
t	1	-4	-6	-3	0	0	1	0	0
и	0	1	1	1	0	0	0	1	1
P	-1	0	0	0	0	0	0	0	0

b

b.v.	V	p_1	p_2	p_3	r	s	t	и	value	Row operations
V	1	-2	-4	-7	1	0	0	0	0	R1÷1
S	0	-5	1	(6)	-1	1	0	0	0	R2-R1
t	0	-2	-2	4	-1	0	1	0	0	R3-R1
и	0	1	1	1	0	0	0	1	1	R4 no change
P	0	-2	-4	-7	1	0	0	0	0	R5+R1

b.v.	V	p_1	p_2	p_3	r	s	t	и	value	Row operations
V	1	$\frac{-47}{6}$	$\frac{-17}{6}$	0	$\frac{-1}{6}$	$\frac{7}{6}$	0	0	0	R1+7R2
p_3	0	<u>-5</u>	$\frac{1}{6}$	1	$\frac{-1}{6}$	$\frac{1}{6}$	0	0	0	R2÷6
t	0	$\left(\frac{4}{3}\right)$	<u>-8</u> 3	0	$\frac{-1}{3}$	$\frac{-2}{3}$	1	0	0	R3-4R2
и	0	$\frac{11}{6}$	<u>5</u>	0	$\frac{1}{6}$	$\frac{-1}{6}$	0	1	1	R4-R2
Р	0	$\frac{-47}{6}$	$\frac{-17}{6}$	0	$\frac{-1}{6}$	$\frac{7}{6}$	0	0	0	R5+7R2

b.v.	V	p_1	p ₂	p_3	r	S	t	и	value	Row operations
V	1	0	$\frac{-37}{2}$	0	$\frac{-17}{8}$	$\frac{-11}{4}$	47 8	0	0	$R1 \div \frac{47}{6}R3$
<i>p</i> ₃	0	0	$\frac{-3}{2}$	1	$\frac{-3}{8}$	$\frac{-1}{4}$	5 8	0	0	$R2 + \frac{5}{6}R3$
p_1	0	1	-2	0	$\frac{-1}{4}$	$\frac{-1}{2}$	3 4	0	0	$R3 \div \frac{4}{3}$
и	0	0	$\left(\frac{9}{2}\right)$	0	<u>5</u> 8	$\frac{3}{4}$	$\frac{-11}{8}$	1	1	$R4 - \frac{11}{6}R3$
Р	0	0	$\frac{-37}{2}$	0	$\frac{-17}{8}$	$\frac{-11}{4}$	47 8	0	0	$R5 + \frac{47}{6}R3$

b.v.	V	p_1	p_2	p_3	r	S	t	и	value	Row operations
V	1	0	0	0	4 9	$\frac{1}{3}$	2 9	$\frac{37}{9}$	37 9	$R1 + \frac{37}{9}R4$
<i>p</i> ₃	0	0	0	1	$\frac{-1}{6}$	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$R2 + \frac{3}{2}R4$
p_1	0	1	0	0	$\frac{1}{36}$	$\frac{-1}{6}$	5 36	4 9	4 9	R3+2R4
p_2	0	0	1	0	5 36	$\frac{1}{6}$	$\frac{-11}{36}$	2 9	2 9	$R4 \div \frac{9}{2}$
P	0	0	0	0	4 9	$\frac{1}{3}$	2 9	$\frac{37}{9}$	37 9	$R5 + \frac{37}{2}R4$

$$V = \frac{37}{9} \text{ so } v = \frac{37}{9} - 5 = \frac{-8}{9} \quad p_1 = \frac{4}{9} \quad p_2 = \frac{2}{9} \quad p_3 = \frac{3}{9}$$

A should play 1 with probability $\frac{4}{9}$

A should play 2 with probability $\frac{2}{9}$

A should play 3 with probability $\frac{3}{9}$

c

b.v.	V	q_1	q_2	q ₃	r	s	t	и	value
r	(1)	-6	-1	-4	1	0	0	0	0
S	1	-4	-5	-2	0	1	0	0	0
t	1	-1	-7	-5	0	0	1	0	0
и	0	1	1	1	0	0	0	1	1
P	-1	0	0	0	0	0	0	0	0

d

b.v.	V	q_1	q_2	q_3	r	s	t	и	value	Row operations
V	1	-6	-1	-4	1	0	0	0	0	R1÷1
S	0	2	-4	2	-1	1	0	0	0	R2-R1
t	0	(3)	-6	-1	-1	0	1	0	0	R3-R1
и	0	1	1	1	0	0	0	1	1	R4 no change
P	0	-6	-1	-4	1	0	0	0	0	R5+R1

b.v.	V	q_1	q_2	q_3	r	S	t	и	value	Row operations
V	1	0	$\frac{-41}{5}$	<u>-26</u> 5	$\frac{-1}{5}$	0	6 5	0	0	R1+6R3
S	0	0	<u>-8</u> 5	12 5	$\frac{-3}{5}$	1	$\frac{-2}{5}$	0	0	R3-2R3
q_1	0	1	<u>-6</u>	$\frac{-1}{5}$	$\frac{-1}{5}$	0	$\frac{1}{5}$	0	0	R3÷5
и	0	0	$\frac{11}{5}$	6 5	$\frac{1}{5}$	0	$\frac{-1}{5}$	1	1	R4-R3
P	0	0	$\frac{-41}{5}$	<u>-26</u> 5	$\frac{-1}{5}$	0	6 5	0	0	R5+6R3

b.v.	V	q_1	q_2	q_3	r	S	t	и	value	Row operations
V	1	0	0	<u>-8</u>	6	0	5	41	41	$R1 + \frac{41}{2}R4$
				11	11		11	11	11	5
S	0	0	0	(36)	-5	1	<u>-6</u>	8	8	R2+8R4
				(11)	11		11	11	11	5
q_1	0	1	0	5	-1	0	1	6	6	R3+6 R4
, ,		Sa .		11	11	8	11	11	11	5
q_2	0	0	1	6	1	0	-1	5	5	R4÷ 11
1 200000				11	11		11	11	11	5
P	0	0	0	-8	6	0	5	41	41	$R5 + \frac{41}{2}R4$
				11	11		11	11	11	5

b.v.	V	q_1	q_2	q_3	r	ε	t	и	value	Row operations
V	1	0	0	0	4 9	$\frac{2}{9}$	$\frac{1}{3}$	35 9	35 9	$R1 + \frac{8}{11}R2$
q_3	0	0	0	1	$\frac{-5}{36}$	$\frac{11}{36}$	$\frac{-1}{6}$	2 9	2 9	$R2 \div \frac{36}{11}$
q_1	0	1	0	0	$\frac{-1}{36}$	<u>-5</u> 36	$\frac{1}{6}$	4 9	4 9	$R3 - \frac{5}{11}R2$
q_2	0	0	1	0	$\frac{1}{6}$	$\frac{-1}{6}$	0	$\frac{1}{3}$	$\frac{1}{3}$	$R4 - \frac{6}{11}R2$
P	0	0	0	0	4 9	2 9	1 3	35 9	35 9	R5+ <mark>8</mark> R2

$$V = \frac{35}{9}$$
 so $v = \frac{35}{9} - 3 = \frac{8}{9}$ $q_1 = \frac{4}{9}$ $q_2 = \frac{3}{9}$ $q_3 = \frac{2}{9}$

B should play 1 with probability $\frac{4}{9}$

B should play 2 with probability $\frac{3}{9}$

B should play 3 with probability $\frac{2}{9}$

Exercise E, Question 1

Question:

A two-person zero-sum game is represented by the following pay-off matrix for player A. Find the best strategy for each player and the value of the game.

		В	
		I	П
A	I	4	-2
	П	-5	6

	B plays 1	B plays 2	Row min	
A plays 1	4	-2	-2	\leftarrow
A plays 2	-5	6	-5	
Column max	4	6		
				

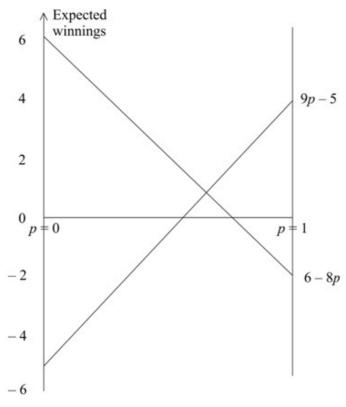
No stable solution since $4 \neq -2$ (column minimax \neq row maximin)

Let A play 1 with probability p

So A plays 2 with probability (1-p)

If B plays 1 A's expected winnings are 4p-5(1-p)=9p-5

If B plays 2 A's expected winnings are -2p + 6(1-p) = 6 - 8p



$$9p - 5 = 6 - 8p$$
$$17p = 11$$
$$p = \frac{11}{12}$$

A should play 1 with probability $\frac{11}{17}$ A should play 2 with probability $\frac{6}{17}$

The value of the game to A is

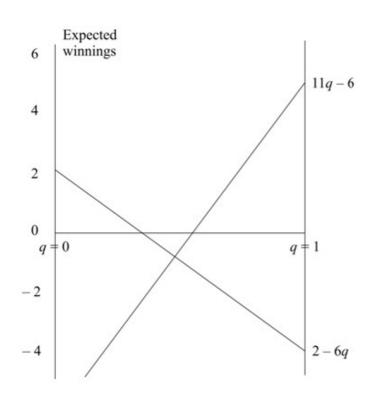
 $\frac{14}{17}$

Let B play 1 with probability q

Let B play 2 with probability (1-q)

If A plays 1 B's expected winnings are -[4q-2(1-q)]=2-6q

If A plays 2 B's expected winnings are -[-5q+6(1-q)]=11q-6



$$11q - 6 = 2 - 6q$$
$$17q = 8$$
$$q = \frac{8}{17}$$

B should play 1 with probability $\frac{8}{17}$

B should play 2 with probability $\frac{9}{17}$

The value of the game to B is $\frac{-14}{17}$

Exercise E, Question 2

Question:

Ben and Greg play a zero-sum game, represented by the following pay-off matrix for Ben

a Explain why this matrix might be reduced to

b Hence find the best strategy for each player and the value of the game.

a Column 3 dominates column 2 (since 3 < 4 and -4 < -1)

b

	A play 1	A play 2	Row min	
B plays 1	-5	3	-5	
B plays 2	1	-4	-4	\leftarrow
Col max	1	3		
S (25)	1			

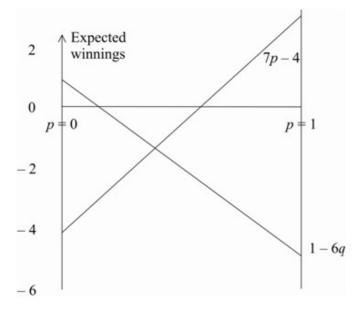
Since 1≠-4 (column minimax ≠ row maximin) game is not stable

Let A play 1 with probability p

So A plays 2 with probability (1-p)

If B plays 1 A's expected winnings are -5p+1(1-p)=1-6p

If B plays 2 A's expected winnings are 3p-4(1-p)=7p-4



$$7p - 4 = 1 - 6p$$

$$13p = 5$$

$$p = \frac{5}{13}$$

A should play 1 with probability $\frac{5}{13}$

A should play 2 with probability

° 13

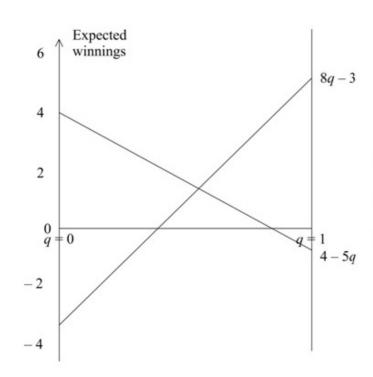
The value of the game is $\frac{-17}{13}$

Let B play 1 with probability q

Let B play 2 with probability (1-q)

If A plays 1 B's expected winnings are -[-5q+3(1-q)]=8q-3

If A plays 2 B's expected winnings are -[q-4(1-q)]=4-5q



$$8q - 3 = 4 - 5q$$

$$8q - 3$$

$$13q = 7$$

$$q = \frac{7}{13}$$

B should play 1 with probability $\frac{7}{13}$ B should play 2 with probability $\frac{6}{13}$

The value of the game is $\frac{17}{13}$

Exercise E, Question 3

Question:

Cait and Georgi play a zero-sum game, represented by the following pay-off matrix for Cait

	Georgi plays 1	Georgi plays 2	Georgi plays 3	3
Cait plays 1	 - 5	2	3	
Cait plays 2	1	-3	-4	
Cait plays 3	-7	0	1	

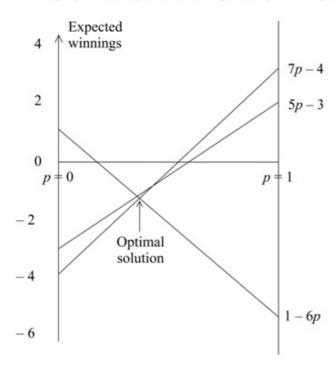
- a Identify the play safe strategies for each player.
- b Verify that there is no stable solution to this game.
- c Use dominance to reduce the game to a 2×3 game, explaining your reasoning.
- d Find Cait's best strategy and the value of the game to her.
- e Write down the value of the game to Georgi.

	G plays 1	G plays 2	G plays 3	Row min	
C plays 1	-5	2	3	-5	
C plays 2	1	-3	-4	-4	\leftarrow
C plays 3	-7	0	1	-7	· ·
Column max	1	2	3		
	1		2		

- a Play safe: Cait plays 2 Georgi plays 1
- b 1≠-4 (column minimax ≠ row maximin) so no stable solution
- c Row 1 dominates row 3 (since -5 > -7 2 > 0 3 > 1)

9	G plays 1	G plays 2	G plays 3
C plays 1	-5	2	3
C plays 2	1	-3	-4

- d Let C play 1 with probability p
 - So C plays 2 with probability (1-p)
 - If G plays 1 C's expected winnings are -5p+1(1-p)=1-6p
 - If G plays 2 C's expected winnings are 2p-3(1-p)=5p-3
 - If G plays 3 C's expected winnings are 3p-4(1-p)=7p-4



- 7p 4 = 1 6p 13p = 5 $p = \frac{5}{2}$
- Cait should play 1 with probability $\frac{5}{13}$ Cait should play 2 with
- probability $\frac{8}{13}$
- Cait should play 3 never
- The value of the game is $\frac{-17}{13}$

- e The value of the game to Georgi is $\frac{17}{13}$
- © Pearson Education Ltd 2010

Exercise E, Question 4

Question:

A two person zero-sum game is represented by the following pay-off matrix for player

	B plays 1	B plays 2	B plays 3
A plays 1	2	-1	-3
A plays 2	-2	1	4
A plays 3	-3	1	-3
A plays 4		2	-2
I			

- a Verify that there is no stable solution to this game
- b Explain the circumstances under which a row, x, dominates a row, y.
- c Reduce the game to a 3×3 game, explaining your reasoning.
- d Formulate the 3×3 game as a linear programming problem for player A. Write the constraints as inequalities and define your variables.

a

	B plays 1	B plays 2	B plays 3	Row min	
A plays 1	2	-1	-3	-3	
A plays 2	-2	1	4	-2	←
A plays 3	-3	1	-3	-3	
A plays 4	-1	2	-2	-2	\leftarrow
Column max	2	2	4		
	1	1			

Since $2 \neq -2$ (column minimax \neq row maximin) there is no stable solution.

b A row x dominates a row y, if, in each column, the element in row $x \ge$ the element in row y.

c Row 4 dominates row 3

	B plays 1	B plays 2	B plays 3
A plays 1	2	-1	-3
A plays 2	-2	1	4
A plays 3	-1	2	-2

d Add 4 to all elements

	B plays 1	B plays 2	B plays 3
A plays 1	6	3	1
A plays 2	2	5	8
A plays 3	3	6	2

Let A play 1 with probability p_1

Let A play 2 with probability p2

Let A play 3 with probability p_3

Let the value of the game to A be ν so $V = \nu + 4$

Maximise P = V

Subject to:

$$6p_1 + 2p_2 + 3p_3 \ge V$$

$$3p_1+5p_2+6p_2 \geq V$$

$$p_1+8p_2+2p_3 \ge V$$

$$p_1 + p_2 + p_3 \le 1$$

Exercise E, Question 5

Question:

A two person zero-sum game is represented by the following pay-off matrix for player

	Bplaysl	B plays 2	B plays 3
A plays 1	5	-1	1
A plays 2	-1	-4	4
A plays 3	3	-2	-1

- a Identify the play safe strategies for each player.
- b Verify that there is no stable solution to this game.
- c Use dominance to reduce the game to a 3×2 game, explaining your reasoning.
- d Write down the pay-off matrix for player B.
- e Find B's best strategy and the value of the game.

	B plays 1	B plays 2	B plays 3	Row min	
A plays 1	5	-3	1	-3	
A plays 2	-1	-4	4	-4	
A plays 3	3	2	-1	-1	\leftarrow
Column max	5	2	4		
		1			

- a Play safe (A plays 1, B plays 2)
- **b** Since $2 \neq -1$ (column minimax \neq row maximin) there is no stable solution
- c Column 2 dominates column 1 (-3 < 5,-4 < -1,2 < 3) B would always choose to minimise A's winnings by playing 2 rather than 1

	B plays 2	B plays 3
A plays 1	-3	1
A plays 2	-4	4
A plays 3	2	-1

d

u			65	
		A plays 1	A plays 2	A plays 3
	B plays 2	3	4	-2
	B plays 3	-1	-4	1

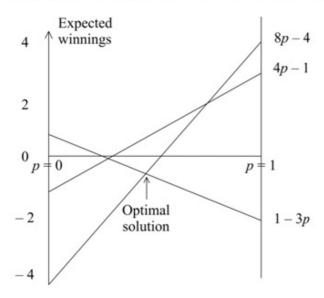
e Let B play 2 with probability p

So B plays 3 with probability (1-p)

If A plays 1 B's expected winnings are 3p-1(1-p)=4p-1

If A plays 2 B's expected winnings are 4p-4(1-p)=8p-4

If A plays 3 B's expected winnings are -2p+1(1-p)=1-3p



$$8p - 4 = 1 - 3p$$
$$11p = 5$$

$$p = \frac{5}{11}$$

B should play 2 with probability $\frac{5}{11}$

B should play 3 with probability $\frac{6}{11}$

The value of the game is $\frac{-4}{11}$

Exercise E, Question 6

Question:

A two person zero-sum game is represented by the following pay-off matrix for player A.

	B plays1	B plays2	B plays3	
A plays1	2	7	-1	
A plays2	5	0	8	
A plays3	-2	3	5	

- a Identify the play safe strategies for each player.
- b Verify that there is no stable solution to this game.
- c Write down the pay-off matrix for player B
- **d** Formulate the game for player B as a linear programming problem. Define your variables and write your constraints as equations.
- e Write down an initial tableau that you could use to solve the game for player B.

	B plays 1	B plays 2	B plays 3	Row min	
A plays 1	2	7	-1	-1	
A plays 2	5	0	8	0	\leftarrow
A plays 3	-2	3	5	-2	
Column max	5	7	8		
	1				

a Play safe is (A plays 2, B plays 1)

b Since 5≠0 (column minimax ≠ row maximin) there is no stable solution

c

S 8	A plays 1	A plays 2	A plays 3		
B plays 1	-2	-5	2		
B plays 2	-7	0	-3		
B plays 3	1	-8	-5		

d Adding 9 to all elements

	A plays 1	A plays 2	A plays 3
B plays 1	7	4	11
B plays 2	2	9	6
B plays 3	10	1	4

Let B play 1 with probability p_1 , play 2 with probability p_2 and play 3 with probability p_3 .

Let v = value of the game to B and V = v + 9Maximise P = V

Subject to:

Subject to:
$$7p_1 + 2p_2 + 10p_3 \ge V \Rightarrow V - 7p_1 - 2p_2 - 10p_3 + r = 0$$

$$4p_1 + 9p_2 + p_3 \ge V \Rightarrow V - 4p_1 - 9p_2 - p_3 + s = 0$$

$$11p_1 + 6p_2 + 4p_3 \ge V \Rightarrow V - 11p_1 - 6p_2 - 4p_3 + t = 0$$

$$p_1 + p_2 + p_3 \le 1 \Rightarrow p_1 + p_2 + p_3 + u = 1$$

$$\text{where } p_1, p_2, p_3, r, s, t, u \ge 0$$

e

b.v.	V	P_1	P_2	P_3	r	S	t	и	value
r	1	-7	-2	-10	1	0	0	0	0
S	1	-4	-9	-1	0	1	0	0	0
t	1	-11	-6	-4	0	0	1	0	0
и	0	1	1	1	0	0	0	1	1
P	-1	0	0	0	0	0	0	0	0