Coordinate geometry in the (x, y) plane Exercise A, Question 1

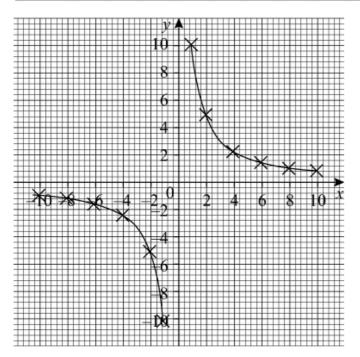
Question:

A curve is given by the parametric equations x = 2t, $y = \frac{5}{t}$ where $t \neq 0$. Complete the table and draw a graph of the curve for $-5 \leq t \leq 5$.

t	-5	-4	-3	-2	-1	-0.5	0.5	1	2	3	4	5
x = 2t	-10	-8				-1						
$y = \frac{5}{t}$	-1	-1.25					10					

Solution:

t	-5	-4	-3	-2	-1	-0.5	0.5	1	2	3	4	5
x=2t	-10	-8	-6	-4	-2	-1	1	2	4	6	8	10
$y = \frac{5}{t}$	-1	-1.25	-1.67	-2.5	-5	-10	10	5	2.5	1.67	1.25	1



Coordinate geometry in the (x, y) plane Exercise A, Question 2

Question:

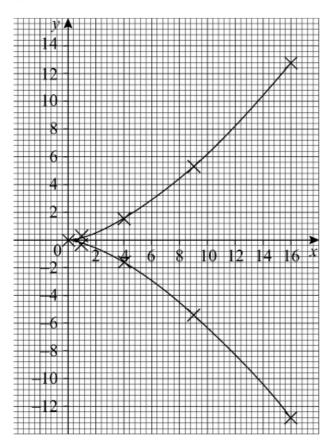
A curve is given by the parametric equations $x = t^2$, $y = \frac{t^3}{5}$. Complete the table and draw a

graph of the curve for $-4 \leq t \leq 4$.

t	-4	-3	-2	-1	0	1	2	3	4
$x = t^2$	16								
$y = \frac{t^3}{5}$	-12.8								

Solution:

t	-4	-3	-2	-1	0	1	2	3	4
$x = t^2$	16	9	4	1	0	1	4	9	16
$y = \frac{t^3}{5}$	-12.8	-5.4	-1.6	-0.2	0	0.2	1.6	5.4	12.8



Coordinate geometry in the (x, y) plane Exercise A, Question 3

Question:

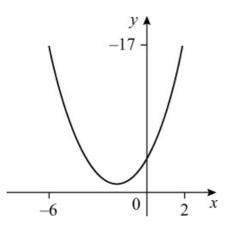
Sketch the curves given by these parametric equations:

(a) $x = t - 2, y = t^2 + 1$ for $-4 \le t \le 4$ (b) $x = t^2 - 2, y = 3 - t$ for $-3 \le t \le 3$ (c) $x = t^2, y = t (5 - t)$ for $0 \le t \le 5$ (d) $x = 3\sqrt{t}, y = t^3 - 2t$ for $0 \le t \le 2$ (e) $x = t^2, y = (2 - t) (t + 3)$ for $-5 \le t \le 5$

Solution:

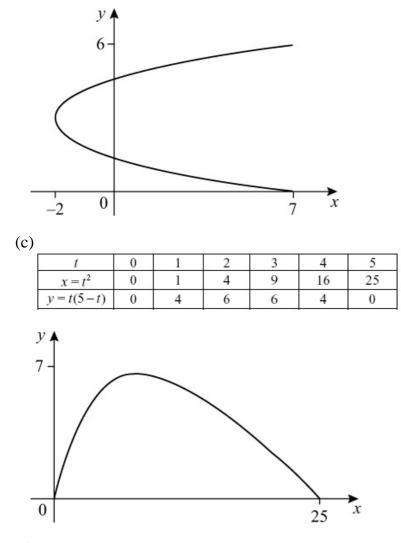
(a)

t	-4	-3	-2	-1	0	1	2	3	4
x = t - 2	-6	-5	-4	-3	-2	-1	0	1	2
$y = t^2 + 1$	17	10	5	2	1	2	5	10	17



(b)

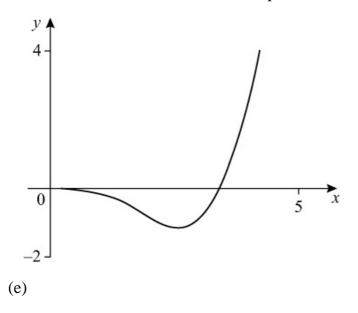
t	-3	-2	-1	0	1	2	3
$x = t^2 - 2$	7	2	-1	-2	-1	2	7
y = 3 - t	6	5	4	3	2	1	0



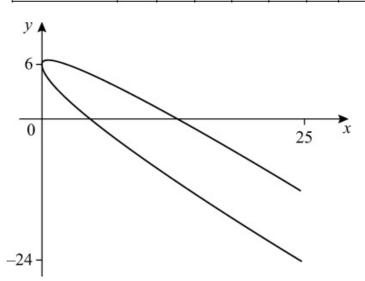
(d)

t	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2
$x = 3\sqrt{t}$	0	1.5	2.12	2.60	3	3.35	3.67	3.97	4.24
$y = t^3 - 2t$	0	-0.48	-0.88	-1.08	-1	-0.55	0.38	1.86	4

Answers have been rounded to 2 d.p.



t	-5	-4	-3	-2	-1	0	1	2	3	4	5
$x = t^2$	25	16	9	4	1	0	1	4	9	16	25
y = (2-t)(t+3)	-14	-6	0	4	6	6	4	0	-6	-14	-24



Coordinate geometry in the (x, y) **plane** Exercise A, Question 4

Question:

Find the cartesian equation of the curves given by these parametric equations:

(a)
$$x = t - 2, y = t^{2}$$

(b) $x = 5 - t, y = t^{2} - 1$
(c) $x = \frac{1}{t}, y = 3 - t, t \neq 0$
(d) $x = 2t + 1, y = \frac{1}{t}, t \neq 0$
(e) $x = 2t^{2} - 3, y = 9 - t^{2}$
(f) $x = \sqrt{t}, y = t (9 - t)$
(g) $x = 3t - 1, y = (t - 1) (t + 2)$
(h) $x = \frac{1}{t - 2}, y = t^{2}, t \neq 2$
(i) $x = \frac{1}{t + 1}, y = \frac{1}{t - 2}, t \neq -1, t \neq 2$
(j) $x = \frac{t}{2t - 1}, y = \frac{t}{t + 1}, t \neq -1, t \neq \frac{1}{2}$
Solution:

(a)
$$x = t - 2$$
, $y = t^2$
 $x = t - 2$
 $t = x + 2$
Substitute $t = x + 2$ into $y = t^2$
 $y = (x + 2)^{-2}$
So the cartesian equation of the curve is $y = (x + 2)^{-2}$.

(b)
$$x = 5 - t$$
, $y = t^2 - 1$

x = 5 - t t = 5 - xSubstitute t = 5 - x into $y = t^2 - 1$ $y = (5 - x)^2 - 1$ $y = 25 - 10x + x^2 - 1$ $y = x^2 - 10x + 24$ So the cartesian equation of the curve is $y = x^2 - 10x + 24$.

(c) $x = \frac{1}{t}, y = 3 - t$ $x = \frac{1}{t}$ $t = \frac{1}{x}$

Substitute $t = \frac{1}{x}$ into y = 3 - t $y = 3 - \frac{1}{x}$

So the cartesian equation of the curve is $y = 3 - \frac{1}{x}$.

(d)
$$x = 2t + 1$$
, $y = \frac{1}{t}$
 $x = 2t + 1$
 $2t = x - 1$
 $t = \frac{x - 1}{2}$
Substitute $t = \frac{x - 1}{2}$ into $y = 1$

$$y = \frac{1}{\left(\frac{x-1}{2}\right)}$$

$$y = \frac{2}{x-1} \left[\text{Note: This uses } \frac{1}{\left(\frac{a}{b}\right)} = \frac{b}{a} \right]$$
So the cartesian equation of the curve is $y = \frac{2}{x-1}$

 $\frac{1}{t}$

(e)
$$x = 2t^2 - 3$$
, $y = 9 - t^2$
 $x = 2t^2 - 3$
 $2t^2 = x + 3$
 $t^2 = \frac{x+3}{2}$
Substitute $t^2 = \frac{x+3}{2}$ into $y = 9 - t^2$
 $y = 9 - \frac{x+3}{2}$
 $y = \frac{18 - (x+3)}{2}$
 $y = \frac{15 - x}{2}$
So the cartesian equation is $y = \frac{15 - x}{2}$.
(f) $x = \sqrt{t}$, $y = t (9 - t)$
 $x = \sqrt{t}$
 $t = x^2$
Substitute $t = x^2$ into $y = t (9 - t)$
 $y = x^2 (9 - x^2)$
So the cartesian equation is $y = x^2 (9 - x^2)$.
(g) $x = 3t - 1$, $y = (t - 1) (t + 2)$
 $x = 3t - 1$
 $3t = x + 1$
 $t = \frac{x+1}{3}$
Substitute $t = \frac{x+1}{3}$ into $y = (t - 1) (t + 2)$
 $y = (\frac{x+1}{3} - 1) (\frac{x+1}{3} + 2)$
 $y = (\frac{x+1}{3} - \frac{3}{3}) (\frac{x+1+6}{3})$
 $y = (\frac{x-2}{3}) (\frac{x+7}{3})$

$$y = \frac{1}{9} \left(x - 2 \right) \left(x + 7 \right)$$

So the cartesian equation of the curve is $y = \frac{1}{9} \begin{pmatrix} x - 2 \end{pmatrix} \begin{pmatrix} x + 7 \end{pmatrix}$.

(h)
$$x = \frac{1}{t-2}, y = t^2$$

 $x = \frac{1}{t-2}$
 $x (t-2) = 1$
 $t-2 = \frac{1}{x}$
 $t = \frac{1}{x} + 2$
 $t = \frac{1}{x} + \frac{2x}{x}$
 $t = \frac{1+2x}{x}$

Substitute $t = \frac{1+2x}{x}$ into $y = t^2$ $y = \left(\frac{1+2x}{x}\right)^2$

So the cartesian equation of the curve is $y = \left(\begin{array}{c} \frac{1+2x}{x} \end{array} \right)^2$.

(i)
$$x = \frac{1}{t+1}, y = \frac{1}{t-2}$$

 $x = \frac{1}{t+1}$
 $(t+1) x = 1$
 $t+1 = \frac{1}{x}$
 $t = \frac{1}{x} - 1$
Substitute $t = \frac{1}{x} - 1$ into $y = \frac{1}{t-2}$

$$y = \frac{1}{(\frac{1}{x} - 1) - 2}$$

$$y = \frac{1}{\frac{1}{x} - 3}$$

$$y = \frac{1}{\frac{1}{x} - \frac{3x}{x}}$$

$$y = \frac{1}{\frac{1}{(\frac{1 - 3x}{x})}}$$

$$y = \frac{x}{1 - 3x} \qquad \left[\text{ Note: This uses } \frac{1}{(\frac{a}{b})} = \frac{b}{a} \right]$$

So the cartesian equation of the curve is $y = \frac{x}{1-3x}$.

(j)
$$x = \frac{t}{2t-1}, y = \frac{t}{t+1}$$

 $x = \frac{t}{2t-1}$
 $x \times \left(2t-1\right) = \frac{t}{2t-1} \times \left(2t-1\right)$ Multiply each side by
(2t-1)
 $x (2t-1) = t$ Simplify
 $2tx - x = t$ Expand the brackets
 $2tx = t + x$ Add x to each side
 $2tx - t = x$ Subtract $2t$ from each side
 $t (2x-1) = x$ Factorise t
 $\frac{t(2x-1)}{(2x-1)} = \frac{x}{2x-1}$ Divide each side by $(2x-1)$
 $t = \frac{x}{2x-1}$ Simplify
Substitute $t = \frac{x}{2x-1}$ into $y = \frac{t}{t+1}$

$$y = \frac{\left(\frac{x}{2x-1}\right)}{\left(\frac{x}{2x-1}+1\right)}$$

$$y = \frac{\left(\frac{x}{2x-1}\right)}{\left(\frac{x}{2x-1} + \frac{2x-1}{2x-1}\right)}$$

$$y = \frac{\left(\frac{x}{2x-1}\right)}{\left(\frac{x+2x-1}{2x-1}\right)}$$

$$y = \frac{\left(\frac{x}{2x-1}\right)}{\left(\frac{3x-1}{2x-1}\right)}$$

$$y = \frac{x}{3x-1}$$
Note: This u

$$y = \frac{x}{3x-1}$$
 [Note: This uses $\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{b}\right)} = \frac{a}{c}$]

So the cartesian equation of the curve is $y = \frac{x}{3x-1}$.

Coordinate geometry in the (x, y) plane Exercise A, Question 5

Question:

Show that the parametric equations: (i) x = 1 + 2t, y = 2 + 3t

(ii) $x = \frac{1}{2t-3}, y = \frac{t}{2t-3}, t \neq \frac{3}{2}$

represent the same straight line.

Solution:

(i)
$$x = 1 + 2t$$
, $y = 2 + 3t$
 $x = 1 + 2t$
 $2t = x - 1$
 $t = \frac{x - 1}{2}$

Substitute $t = \frac{x-1}{2}$ into y = 2 + 3t $y = 2 + 3 \left(\frac{x-1}{2}\right)$ $y = 2 + 3 \left(\frac{x}{2} - \frac{1}{2}\right)$ $y = 2 + \frac{3x}{2} - \frac{3}{2}$ $y = \frac{3x}{2} + \frac{1}{2}$

(ii)
$$x = \frac{1}{2t-3}, y = \frac{t}{2t-3}$$

 $\frac{y}{x} = \frac{\left(\frac{t}{2t-3}\right)}{\left(\frac{1}{2t-3}\right)}$ Note: $\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{b}\right)} = \frac{a}{c}$
 $\frac{y}{x} = t$
Substitute $t = \frac{y}{x}$ into $x = \frac{1}{2t-3}$

$$x = \frac{1}{2\left(\frac{y}{x}\right) - 3}$$

$$x \left[2\left(\frac{y}{x}\right) - 3 \right] = 1$$

$$2y - 3x = 1$$

$$2y - 3x + 1$$

$$y = \frac{3}{2}x + \frac{1}{2}$$

The cartesian equations of (i) and (ii) are the same, so they represent the same straight line.

Coordinate geometry in the (x, y) **plane** Exercise B, Question 1

Question:

Find the coordinates of the point(s) where the following curves meet the *x*-axis:

(a)
$$x = 5 + t, y = 6 - t$$

(b) $x = 2t + 1, y = 2t - 6$
(c) $x = t^2, y = (1 - t) (t + 3)$
(d) $x = \frac{1}{t}, y = \sqrt{(t - 1) (2t - 1)}, t \neq 0$

(e)
$$x = \frac{2t}{1+t}, y = t - 9, t \neq -1$$

Solution:

(a)
$$x = 5 + t$$
, $y = 6 - t$
When $y = 0$
 $6 - t = 0$
so $t = 6$
Substitute $t = 6$ into $x = 5 + t$
 $x = 5 + 6$
 $x = 11$
So the curve meets the x-axis at (11, 0).

(b)
$$x = 2t + 1$$
, $y = 2t - 6$
When $y = 0$
 $2t - 6 = 0$
 $2t = 6$
so $t = 3$
Substitute $t = 3$ into $x = 2t + 1$
 $x = 2(3) + 1$
 $x = 6 + 1$
 $x = 7$
So the curve meets the x-axis at (7, 0).

(c)
$$x = t^2$$
, $y = (1 - t) (t + 3)$
When $y = 0$

$$(1-t) (t+3) = 0$$

so $t = 1$ and $t = -3$
(1) Substitute $t = 1$ into $x = t^2$
 $x = 1^2$
(2) Substitute $t = -3$ into $x = t^2$
 $x = (-3)^2$
 $x = 9$
So the curve meets the x-axis at (1, 0) and (9, 0).

(d)
$$x = \frac{1}{t}, y = \sqrt{(t-1)(2t-1)}$$

When $y = 0$
 $\sqrt{(t-1)(2t-1)} = 0$
 $(t-1)(2t-1) = 0$
so $t = 1$ and $t = \frac{1}{2}$
(1) Substitute $t = 1$ into $x = \frac{1}{t}$
 $x = \frac{1}{(1)}$
 $x = 1$
(2) Substitute $t = \frac{1}{2}$ into $x = \frac{1}{t}$

$$x = \frac{1}{\left(\frac{1}{2}\right)}$$

$$x = 2$$

So the curve meets the x-axis at (1, 0) and (2, 0).

(e)
$$x = \frac{2t}{1+t}$$
, $y = t - 9$
When $y = 0$
 $t - 9 = 0$
so $t = 9$
Substitute $t = 9$ into $x = \frac{2t}{1+t}$
 $x = \frac{2(9)}{1+(9)}$

$$x = \frac{18}{10}$$
$$x = \frac{9}{5}$$

So the curve meets the *x*-axis at $\begin{pmatrix} \frac{9}{5}, 0 \end{pmatrix}$.

Coordinate geometry in the (x, y) plane Exercise B, Question 2

Question:

Find the coordinates of the point(s) where the following curves meet the *y*-axis:

(a)
$$x = 2t, y = t^2 - 5$$

(b) $x = \sqrt{(3t - 4)}, y = \frac{1}{t^2}, t \neq 0$
(c) $x = t^2 + 2t - 3, y = t(t - 1)$
(d) $x = 27 - t^3, y = \frac{1}{t - 1}, t \neq 1$

(e)
$$x = \frac{t-1}{t+1}, y = \frac{2t}{t^2+1}, t \neq -1$$

Solution:

(a) When
$$x = 0$$

 $2t = 0$
so $t = 0$
Substitute $t = 0$ into $y = t^2 - 5$
 $y = (0)^2 - 5$
 $y = -5$
So the curve meets the y-axis at $(0, -5)$.

(b) When x = 0 $\sqrt{3t - 4} = 0$ 3t - 4 = 0 3t = 4so $t = \frac{4}{3}$ Substitute $t = \frac{4}{3}$ into $y = \frac{1}{t^2}$ $y = \frac{1}{\left(\frac{4}{3}\right)^2}$

$$y = \frac{1}{\left(\frac{16}{9}\right)}$$

$$y = \frac{9}{16} \left[\text{Note: This uses } \frac{1}{\left(\frac{a}{b}\right)} = \frac{b}{a} \right]$$
So the curve meets the y-axis at $\left(0, \frac{9}{16}\right)$.

- (c) When x = 0 $t^{2} + 2t - 3 = 0$ (t + 3) (t - 1) = 0so t = -3 and t = 1(1) Substitute t = -3 into y = t (t - 1) y = (-3) [(-3) - 1] $y = (-3) \times (-4)$ y = 12(2) Substitute t = 1 into y = t (t - 1) y = 1 (1 - 1) y = 0So the curve meets the y-axis at (0, 0) and (0, 12).
- (d) When x = 0
 - $27 t^{3} = 0$ $t^{3} = 27$ $t = \sqrt[3]{27}$ so t = 3Substitute t = 3 into $y = \frac{1}{t-1}$ $y = \frac{1}{(3) - 1}$

$$y = \frac{1}{2}$$

So the curve meets the y-axis at $\begin{pmatrix} 0, \frac{1}{2} \end{pmatrix}$.

(e) When x = 0

$$\frac{t-1}{t+1} = 0$$

$$t-1 = 0 \qquad \left[\text{ Note: } \frac{a}{b} = 0 \Rightarrow a = 0 \right]$$

So $t = 1$

Substitute t = 1 into $y = \frac{2t}{t^2 + 1}$

$$y = \frac{2(1)}{(1)^{2} + 1}$$
$$y = \frac{2}{2}$$
$$y = 1$$

So the curve meets the y-axis at (0, 1).

Coordinate geometry in the (x, y) plane Exercise B, Question 3

Question:

A curve has parametric equations $x = 4at^2$, y = a(2t - 1), where *a* is a constant. The curve passes through the point (4, 0). Find the value of *a*.

Solution:

When y = 0 a (2t - 1) = 0 2t - 1 = 0 2t = 1 $t = \frac{1}{2}$ When $t = \frac{1}{2}, x = 4$ So substitute $t = \frac{1}{2}$ and x = 4 into $x = 4at^2$ $4a \left(\frac{1}{2}\right)^2 = 4$ $4a \times \frac{1}{4} = 4$ a = 4So the value of a is 4.

Coordinate geometry in the (x, y) plane Exercise B, Question 4

Question:

A curve has parametric equations x = b (2t - 3), $y = b (1 - t^2)$, where *b* is a constant. The curve passes through the point (0, -5). Find the value of *b*.

Solution:

When x = 0 b (2t - 3) = 0 2t - 3 = 0 2t = 3 $t = \frac{3}{2}$ When $t = \frac{3}{2}$, y = -5So substitute $t = \frac{3}{2}$ and y = -5 into $y = b (1 - t^2)$ $b \left[1 - \left(\frac{3}{2}\right)^2 \right] = -5$ $b \left(1 - \frac{9}{4} \right) = -5$ $b \left(\frac{-5}{4} \right) = -5$ $b = \frac{-5}{(\frac{-5}{4})}$

b = 4So the value of *b* is 4.

Coordinate geometry in the (x, y) **plane** Exercise B, Question 5

Question:

A curve has parametric equations x = p(2t - 1), $y = p(t^3 + 8)$, where *p* is a constant. The curve meets the *x*-axis at (2, 0) and the *y*-axis at *A*.

(a) Find the value of *p*.

(b) Find the coordinates of A.

Solution:

(a) When
$$y = 0$$

 $p(t^3 + 8) = 0$
 $t^3 + 8 = 0$
 $t^3 = -8$
 $t = \sqrt[3]{-8}$
 $t = -2$
When $t = -2, x = 2$
So substitute $t = -2$ and $x = 2$ into $x = p(2t - 1)$
 $p[2(-2) - 1] = 2$
 $p(-4 - 1) = 2$
 $p(-5) = 2$
 $p = -\frac{2}{5}$
(b) When $x = 0$
 $p(2t - 1) = 0$
 $2t - 1 = 0$
 $2t = 1$
 $t = \frac{1}{2}$

When the curve meets the y-axis $t = \frac{1}{2}$

So substitute
$$t = \frac{1}{2}$$
 into $y = p(t^3 + 8)$
 $y = p \begin{bmatrix} \left(\frac{1}{2}\right)^3 + 8 \end{bmatrix}$

but
$$p = -\frac{2}{5}$$

So $y = -\frac{2}{5} \left[\left(\frac{1}{2} \right)^3 + 8 \right] = -\frac{2}{5} \left(\frac{1}{8} + 8 \right) = -\frac{2}{5} \times \frac{65}{8} = -\frac{13}{4}$
So the coordinates of *A* are $\left(0, -\frac{13}{4} \right)$.

Coordinate geometry in the (x, y) plane Exercise B, Question 6

Question:

A curve is given parametrically by the equations $x = 3qt^2$, $y = 4(t^3 + 1)$, where q is a constant. The curve meets the *x*-axis at *X* and the *y*-axis at *Y*. Given that OX = 2OY, where *O* is the origin, find the value of q.

Solution:

```
(1) When y = 0
4(t^3+1) = 0
t^3 + 1 = 0
t^3 = -1
t = {}^{3}\sqrt{-1}
t = -1
Substitute t = -1 into x = 3qt^2
x = 3q(-1)^{2}
x = 3q
So the coordinates of X are (3q, 0).
(2) When x = 0
3qt^2 = 0
t^2 = 0
t = 0
Substitute t = 0 into y = 4 (t^3 + 1)
y = 4 [(0)^{3} + 1]
y = 4
So the coordinates of Y are (0, 4).
(3) Now OX = 3q and OY = 4
As OX = 2OY
(3q) = 2(4)
3q = 8
q = \frac{8}{3}
So the value of q is \frac{8}{3}.
```

Coordinate geometry in the (x, y) plane Exercise B, Question 7

Question:

Find the coordinates of the point of intersection of the line with parametric equations x = 3t + 2, y = 1 - t and the line y + x = 2.

Solution:

(1) Substitute x = 3t + 2 and y = 1 - t into y + x = 2 (1 - t) + (3t + 2) = 2 1 - t + 3t + 2 = 2 2t + 3 = 2 2t = -1 $t = -\frac{1}{2}$ (2) Substitute $t = -\frac{1}{2}$ into x = 3t + 2 $x = 3\left(-\frac{1}{2}\right) + 2 = -\frac{3}{2} + 2 = \frac{1}{2}$ (3) Substitute $t = -\frac{1}{2}$ into y = 1 - t $y = 1 - \left(-\frac{1}{2}\right) = 1 + \frac{1}{2} = \frac{3}{2}$

So the coordinates of the point of intersection are $\begin{pmatrix} \frac{1}{2}, \frac{3}{2} \end{pmatrix}$.

Coordinate geometry in the (x, y) **plane** Exercise B, Question 8

Question:

Find the coordinates of the points of intersection of the curve with parametric equations $x = 2t^2 - 1$, y = 3 (t + 1) and the line 3x - 4y = 3.

Solution:

```
(1) Substitute x = 2t^2 - 1 and y = 3 (t + 1) into 3x - 4y = 3
3(2t^2-1) - 4[3(t+1)] = 3
3(2t^2-1) - 12(t+1) = 3
6t^2 - 3 - 12t - 12 = 3
6t^2 - 12t - 15 = 3
6t^2 - 12t - 18 = 0 \qquad ( \div 6 )
t^2 - 2t - 3 = 0
(t-3)(t+1) = 0
so t = 3 and t = -1
(2) Substitute t = 3 into x = 2t^2 - 1 and y = 3(t + 1)
x = 2(3)^2 - 1 = 17
y = 3(3 + 1) = 12
(3) Substitute t = -1 into x = 2t^2 - 1 and y = 3(t + 1)
x = 2(-1)^2 - 1 = 1
y = 3(-1+1) = 0
So the coordinates of the points of intersection are (17, 12) and (1, 0).
```

Coordinate geometry in the (x, y) plane Exercise B, Question 9

Question:

Find the values of *t* at the points of intersection of the line 4x - 2y - 15 = 0 with the parabola $x = t^2$, y = 2t and give the coordinates of these points.

Solution:

(1) Substitute $x = t^2$ and y = 2t into 4x - 2y - 15 = 0 $4(t^2) - 2(2t) - 15 = 0$ $4t^2 - 4t - 15 = 0$ (2t+3)(2t-5)=0So $2t + 3 = 0 \implies 2t = -3 \implies t = \frac{-3}{2}$ and $2t-5=0 \Rightarrow 2t=5 \Rightarrow t=\frac{5}{2}$ (2) Substitute $t = -\frac{3}{2}$ into $x = t^2$ and y = 2t $x = \left(\begin{array}{c} -\frac{3}{2} \\ \end{array} \right)^2 = \frac{9}{4}$ $y = 2\left(\begin{array}{c} -\frac{3}{2} \end{array}\right) = -3$ (3) Substitute $t = \frac{5}{2}$ into $x = t^2$ and y = 2t $x = \left(\begin{array}{c} \frac{5}{2} \\ 2 \end{array} \right)^2 = \frac{25}{4}$ $y = 2 \left(\begin{array}{c} \frac{5}{2} \\ \end{array} \right) = 5$ So the coordinates of the points of intersection are $\begin{pmatrix} \frac{9}{4}, -3 \end{pmatrix}$ and $\begin{pmatrix} \frac{9}{4}, -3 \end{pmatrix}$ $\frac{25}{4}$, 5 $\right)$.

Coordinate geometry in the (x, y) **plane** Exercise B, Question 10

Question:

Find the points of intersection of the parabola $x = t^2$, y = 2t with the circle $x^2 + y^2 - 9x + 4 = 0$.

Solution:

(1) Substitute
$$x = t^{2}$$
 and $y = 2t$ into $x^{2} + y^{2} - 9x + 4 = 0$
 $(t^{2})^{2} + (2t)^{2} - 9(t^{2}) + 4 = 0$
 $t^{4} + 4t^{2} - 9t^{2} + 4 = 0$
 $t^{4} - 5t^{2} + 4 = 0$
 $(t^{2} - 4)(t^{2} - 1) = 0$
So $t^{2} - 4 = 0 \implies t^{2} = 4 \implies t = \sqrt{4} \implies t = \pm 2$ and
 $t^{2} - 1 = 0 \implies t^{2} = 1 \implies t = \sqrt{1} \implies t = \pm 1$
(2) Substitute $t = 2$ into $x = t^{2}$ and $y = 2t$
 $x = (2)^{2} = 4$
 $y = 2(2) = 4$
(3) Substitute $t = -2$ into $x = t^{2}$ and $y = 2t$
 $x = (-2)^{2} = 4$
 $y = 2(-2) = -4$
(4) Substitute $t = 1$ into $x = t^{2}$ and $y = 2t$
 $x = (1)^{2} = 1$
 $y = 2(1) = 2$
(5) Substitute $t = -1$ into $x = t^{2}$ and $y = 2t$
 $x = (-1)^{2} = 1$
 $y = 2(-1) = -2$
So the coordinates of the points of intersection are (4, 4), (4, -4), (1, 2)
and (1, -2).

Coordinate geometry in the (x, y) plane Exercise C, Question 1

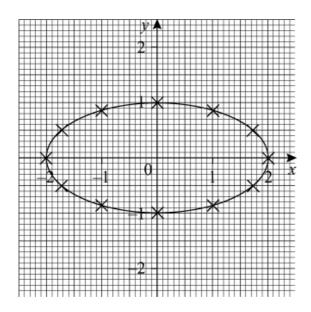
Question:

A curve is given by the parametric equations $x = 2 \sin t$, $y = \cos t$. Complete the table and draw a graph of the curve for $0 \le t \le 2\pi$.

t	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
$x = 2 \sin t$		36 92	1.73		1.73	8	2 2 2	-1		-2			0
$y = \cos t$		0.87					-1		-0.5		0.5		

Solution:

t	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
$x = 2 \sin t$	0	1	1.73	2	1.73	1	0	-1	-1.73	-2	-1.73	-1	0
$y = \cos t$	1	0.87	0.5	0	-0.5	-0.87	-1	-0.87	-0.5	0	0.5	0.87	1



Coordinate geometry in the (x, y) plane Exercise C, Question 2

Question:

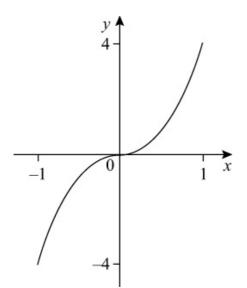
A curve is given by the parametric equations $x = \sin t$, $y = \tan t$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$. Draw a graph

of the curve.

Solution:

t	$\frac{-4\pi}{10}$	$\frac{-3\pi}{10}$	$\frac{-2\pi}{10}$	$\frac{-\pi}{10}$	0	$\frac{\pi}{10}$	$\frac{2\pi}{10}$	$\frac{3\pi}{10}$	$\frac{4\pi}{10}$
$x = \sin t$	-0.95	-0.81	-0.59	-0.31	0	0.31	0.59	0.81	0.95
$y = \tan t$	-3.08	-1.38	-0.73	-0.32	0	0.32	0.73	1.38	3.08

Answers are given to 2 d.p.



Coordinate geometry in the (x, y) **plane** Exercise C, Question 3

Question:

Find the cartesian equation of the curves given by the following parametric equations:

(a) $x = \sin t, y = \cos t$ (b) $x = \sin t - 3, y = \cos t$ (c) $x = \cos t - 2, y = \sin t + 3$ (d) $x = 2 \ \cos t, y = 3 \ \sin t$ (e) $x = 2 \ \sin t - 1, y = 5 \ \cos t + 4$ (f) $x = \cos t, y = \sin 2t$ (g) $x = \cos t, y = 2 \ \cos 2t$ (h) $x = \sin t, y = \tan t$ (i) $x = \cos t + 2, y = 4 \ \sec t$ (j) $x = 3 \ \cot t, y = \csc t$ Solution: (a) $x = \sin t, y = \cos t$ $x^2 = \sin^2 t, y^2 = \cos^2 t$ As $\sin^2 t + \cos^2 t = 1$

(b)
$$x = \sin t - 3$$
, $y = \cos t$
 $\sin t = x + 3$
 $\sin^2 t = (x + 3)^2$
 $\cos t = y$
 $\cos^2 t = y^2$
As $\sin^2 t + \cos^2 t = 1$
 $(x + 3)^2 + y^2 = 1$

 $x^2 + y^2 = 1$

(c)
$$x = \cos t - 2$$
, $y = \sin t + 3$
 $\cos t = x + 2$
 $\sin t = y - 3$
As $\sin^2 t + \cos^2 t = 1$
 $(y - 3)^2 + (x + 2)^2 = 1$ or $(x + 2)^2 + (y - 3)^2 = 1$
(d) $x = 2 \cos t$, $y = 3 \sin t$
 $\sin t = \frac{y}{3}$
 $\cos t = \frac{x}{2}$
As $\sin^2 t + \cos^2 t = 1$
 $\left(\frac{y}{3}\right)^2 + \left(\frac{x}{2}\right)^2 = 1$ or $\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$
(e) $x = 2 \sin t - 1$, $y = 5 \cos t + 4$
 $2 \sin t - 1 = x$
 $2 \sin t - 1 = x$
 $2 \sin t = x + 1$
 $\sin t = \frac{x + 1}{2}$
and
 $5 \cos t + 4 = y$
 $5 \cos t = y - 4$
 $\cos t = \frac{y - 4}{5}$
As $\sin^2 t + \cos^2 t = 1$
 $\left(\frac{x + 1}{2}\right)^2 + \left(\frac{y - 4}{5}\right)^2 = 1$
(f) $x = \cos t$, $y = \sin 2t$
As $\sin 2t = 2 \sin t \cos t$
 $y = 2 \sin t \cos t = (2 \sin t) - x$
Now $\sin^2 t + \cos^2 t = 1$
 $\Rightarrow \sin^2 t = 1 - x^2$
 $\Rightarrow \sin t = \sqrt{1 - x^2}$
So $y = (2\sqrt{1 - x^2}) - x$ or $y = 2x\sqrt{1 - x^2}$
(g) $x = \cos t$, $y = 2 \cos 2t$
As $\cos 2t = 2 \cos^2 t - 1$

$$y = 2 (2 \cos^{2} t - 1)$$

But $x = \cos t$
So $y = 2 (2x^{2} - 1)$
 $y = 4x^{2} - 2$
(h) $x = \sin t, y = \tan t$
As $\tan t = \frac{\sin t}{\cos t}$
But $x = \sin t$
So $y = \frac{x}{\cos t}$
Now $\cos t = \sqrt{1 - \sin^{2} t} = \sqrt{1 - x^{2}}$ (from $\sin^{2} t + \cos^{2} t = 1$)
So $y = \frac{x}{\sqrt{1 - x^{2}}}$
(i) $x = \cos t + 2, y = 4 \sec t$
As $\sec t = \frac{1}{\cos t}$
 $y = 4 \times \frac{1}{\cos t} = \frac{4}{\cos t}$
Now $x = \cos t + 2 \Rightarrow \cos t = x - 2$
So $y = \frac{4}{x - 2}$
(j) $x = 3 \cot t, y = \csc t$
As $\sin^{2} t + \cos^{2} t = 1$
 $\frac{\sin^{2} t}{\sin^{2} t} + \frac{\cos^{2} t}{\sin^{2} t} = \frac{1}{\sin^{2} t}$ ($\div \sin^{2} t$)
 $1 + (\frac{\cos t}{\sin t})^{2} = (\frac{1}{\sin t})^{2}$
 $1 + \cot^{2} t = \csc^{2} t$
Now $x = 3 \cot t \Rightarrow \cot t = \frac{x}{3}$
and $y = \csc t$
So $1 + (\frac{x}{3})^{2} = (y)^{2}$ (using $1 + \cos^{2} t = \csc^{2} t$)

or
$$y^2 = 1 + \left(\frac{x}{3}\right)^2$$

© Pearson Education Ltd 2009

Coordinate geometry in the (x, y) plane Exercise C, Question 4

Question:

A circle has parametric equations $x = \sin t - 5$, $y = \cos t + 2$.

- (a) Find the cartesian equation of the circle.
- (b) Write down the radius and the coordinates of the centre of the circle.

Solution:

(a) $x = \sin t - 5$, $y = \cos t + 2$ $\sin t = x + 5$ and $\cos t = y - 2$ As $\sin^2 t + \cos^2 t = 1$ $(x + 5)^2 + (y - 2)^2 = 1$

(b) This is a circle with centre (-5, 2) and radius 1.

Coordinate geometry in the (x, y) plane Exercise C, Question 5

Question:

A circle has parametric equations $x = 4 \sin t + 3$, $y = 4 \cos t - 1$. Find the radius and the coordinates of the centre of the circle.

Solution:

 $x = 4 \sin t + 3$ $4 \sin t = x - 3$ $\sin t = \frac{x - 3}{4}$ and $y = 4 \cos t - 1$ $4 \cos t = y + 1$ $\cos t = \frac{y + 1}{4}$ As $\sin^{2} t + \cos^{2} t = 1$ $\left(\frac{x - 3}{4}\right)^{2} + \left(\frac{y + 1}{4}\right)^{2} = 1$ $\frac{(x - 3)^{2}}{4^{2}} + \frac{(y + 1)^{2}}{4^{2}} = 1$ $\frac{(x - 3)^{2}}{16} + \frac{(y + 1)^{2}}{16} = 1$ $(x - 3)^{2} + (x + 1)^{2} = 1$

 $(x-3)^2 + (y+1)^2 = 16$ Multiply throughout by 16 So the centre of the circle is (3, -1) and the radius is 4.

Coordinate geometry in the (x, y) plane Exercise D, Question 1

Question:

The following curves are given parametrically. In each case, find an expression for $y \frac{dx}{dt}$ in terms of *t*.

(a)
$$x = t + 3$$
, $y = 4t - 3$
(b) $x = t^3 + 3t$, $y = t^2$
(c) $x = (2t - 3)^2$, $y = 1 - t^2$
(d) $x = 6 - \frac{1}{t}$, $y = 4t^3$, $t > 0$
(e) $x = \sqrt{t}$, $y = 6t^3$, $t \ge 0$
(f) $x = \frac{4}{t^2}$, $y = 5t^2$, $t < 0$
(g) $x = 5t^{\frac{1}{2}}$, $y = 4t^{-\frac{3}{2}}$, $t > 0$
(h) $x = t^{\frac{1}{3}} - 1$, $y = \sqrt{t}$, $t \ge 0$
(i) $x = 16 - t^4$, $y = 3 - \frac{2}{t}$, $t < 0$
(j) $x = 6t^{\frac{2}{3}}$, $y = t^2$
Solution:

(a)
$$x = t + 3, y = 4t - 3$$

 $\frac{dx}{dt} = 1$
So $y \frac{dx}{dt} = (4t - 3) \times 1 = 4t - 3$

(b)
$$x = t^{3} + 3t$$
, $y = t^{2}$
 $\frac{dx}{dt} = 3t^{2} + 3$
So $y \frac{dx}{dt} = t^{2} (3t^{2} + 3) = 3t^{2} (t^{2} + 1)$ Factorise 3
(c) $x = (2t - 3)^{2}$, $y = 1 - t^{2}$
 $x = 4t^{2} - 12t + 9$
 $\frac{dx}{dt} = 8t - 12$
So $y \frac{dx}{dt} = (1 - t^{2}) (8t - 12) = 4 (1 - t^{2}) (2t - 3)$
Factorise 4
(d) $x = 6 - \frac{1}{t}$, $y = 4t^{3}$
 $x = 6 - t^{-1}$
 $\frac{dx}{dt} = t^{-2}$
So $y \frac{dx}{dt} = 4t^{3} \times t^{-2} = 4t$
(e) $x = \sqrt{t}$, $y = 6t^{3}$
 $x = t^{\frac{1}{2}}$
 $\frac{dx}{dt} = \frac{1}{2}t^{-\frac{1}{2}}$
So $y \frac{dx}{dt} = 6t^{3} \times \frac{1}{2}t^{-\frac{1}{2}} = 3t^{3-\frac{1}{2}} = 3t^{\frac{5}{2}}$
(f) $x = \frac{4}{t^{2}}$, $y = 5t^{2}$
 $x = 4t^{-2}$
 $\frac{dx}{dt} = -8t^{-3}$
So $y \frac{dx}{dt} = 5t^{2} \times -8t^{-3} = -40t^{2-3} = -40t^{-1} = -\frac{40}{t}$
(g) $x = 5t^{\frac{1}{2}}$, $y = 4t^{-\frac{3}{2}}$

$$\frac{dx}{dt} = 5 \times \frac{1}{2}t^{-\frac{1}{2}} = \frac{5}{2}t^{-\frac{1}{2}}$$
So $y \frac{dx}{dt} = 4t^{-\frac{3}{2}} \times \frac{5}{2}t^{-\frac{1}{2}} = 10t^{-\frac{3}{2}-\frac{1}{2}} = 10t^{-2}$

(h) $x = t^{\frac{1}{3}} - 1, y = \sqrt{t}$
 $\frac{dx}{dt} = \frac{1}{3}t^{\frac{1}{3}-1} = \frac{1}{3}t^{-\frac{2}{3}}$
So $y \frac{dx}{dt} = \sqrt{t} \times \frac{1}{3}t^{-\frac{2}{3}} = t^{\frac{1}{2}} \times \frac{1}{3}t^{-\frac{2}{3}} = \frac{1}{3}t^{\frac{1}{2}-\frac{2}{3}} = \frac{1}{3}t^{-\frac{1}{6}}$

(i) $x = 16 - t^4, y = 3 - \frac{2}{t}$
 $\frac{dx}{dt} = -4t^3$
So $y \frac{dx}{dt} = \left(3 - \frac{2}{t}\right) \left(-4t^3\right)$
 $= 3 \times \left(-4t^3\right) + \frac{2}{t} \times 4t^3$
 $= -12t^3 + 8t^2$ [or $8t^2 - 12t^3$ or $4t^2$ (2 - 3t)]

(j)
$$x = 6t^{\frac{2}{3}}, y = t^{2}$$

 $\frac{dx}{dt} = 6 \times \frac{2}{3}t^{\frac{2}{3}} - 1 = 4t^{-\frac{1}{3}}$
So $y \frac{dx}{dt} = t^{2} \times 4t^{-\frac{1}{3}} = 4t^{2-\frac{1}{3}} = 4t^{\frac{5}{3}}$

Coordinate geometry in the (x, y) plane Exercise D, Question 2

Question:

A curve has parametric equations x = 2t - 5, y = 3t + 8. Work out $\int_{0}^{4} y \frac{dx}{dt} dt$.

Solution:

$$x = 2t - 5, y = 3t + 8$$

$$\frac{dx}{dt} = 2$$

So $y \frac{dx}{dt} = (3t + 8) \times 2 = 6t + 16$

$$\int_{0}^{4} y \frac{dx}{dt} dt = \int_{0}^{4} 6t + 16 dt$$

$$= [3t^{2} + 16t]_{0}^{4}$$

$$= [3(4)^{2} + 16(4)] - [3(0)^{2} + 16(0)]$$

$$= (3 \times 16 + 16 \times 4) - 0$$

$$= 48 + 64$$

$$= 112$$

Coordinate geometry in the (x, y) plane Exercise D, Question 3

Question:

A curve has parametric equations $x = t^2 - 3t + 1$, $y = 4t^2$. Work out $\int_{-1}^{5} y \frac{dx}{dt} dt$.

Solution:

$$x = t^{2} - 3t + 1, y = 4t^{2}$$

$$\frac{dx}{dt} = 2t - 3$$
So $y \frac{dx}{dt} = 4t^{2} \left(2t - 3 \right) = 8t^{3} - 12t^{2}$

$$\int_{-1}^{5} y \frac{dx}{dt} dt = \int_{-1}^{5} 8t^{3} - 12t^{2} dt$$

$$= \left[2t^{4} - 4t^{3} \right]_{-1}^{5}$$

$$= \left[2 \left(5 \right)^{-4} - 4 \left(5 \right)^{-3} \right]_{-1}^{5} - \left[2 \left(-1 \right)^{-4} - 4 \left(-1 \right)^{-3} \right]_{-1}^{3}$$

$$= 750 - 6$$

$$= 744$$

Coordinate geometry in the (x, y) **plane** Exercise D, Question 4

Question:

A curve has parametric equations $x = 3t^2$, $y = \frac{1}{t} + t^3$, t > 0. Work out $\int_{0.5}^{3} y$

 $\frac{\mathrm{d}x}{\mathrm{d}t}\mathrm{d}t.$

Solution:

$$x = 3t^{2}, y = \frac{1}{t} + t^{3}$$

$$\frac{dx}{dt} = 6t$$
So $y \frac{dx}{dt} = \left(\frac{1}{t} + t^{3}\right) \times 6t = \frac{1}{t} \times 6t + t^{3} \times 6t = 6 + 6t^{4}$

$$\int_{0.5}^{3} y \frac{dx}{dt} dt = \int_{0.5}^{3} 6 + 6t^{4} dt$$

$$= \left[6t + \frac{6}{5}t^{5}\right]_{0.5}^{3}$$

$$= \left[6\left(3\right) + \frac{6}{5}\left(3\right)^{5}\right] - \left[6\left(0.5\right) + \frac{6}{5}\left(0.5\right)\right]$$

$$= 309.6 - 3.0375$$

$$= 306.5625 \quad (\text{or } 306 \frac{9}{16})$$

© Pearson Education Ltd 2009

5

Coordinate geometry in the (x, y) plane Exercise D, Question 5

Question:

A curve has parametric equations $x = t^3 - 4t$, $y = t^2 - 1$. Work out $\int_{-2}^{2} y \frac{dx}{dt} dt$.

Solution:

$$\begin{aligned} x &= t^{3} - 4t, y = t^{2} - 1 \\ \frac{dx}{dt} &= 3t^{2} - 4 \\ \text{So } y \frac{dx}{dt} &= \left(t^{2} - 1\right) \times \left(3t^{2} - 4\right) = 3t^{4} - 4t^{2} - 3t^{2} + 4 = 3t^{4} - 7t^{2} + 4 \\ \int_{-2}^{2} 3t^{4} - 7t^{2} + 4 dt &= \left[\frac{3}{5}t^{5} - \frac{7}{3}t^{3} + 4t\right]_{-2}^{2} \\ &= \left[\frac{3}{5}(2)^{5} - \frac{7}{3}(2)^{3} + 4(2)\right] - \left[\frac{3}{5}(-2)^{5} - \frac{7}{3}(-2)^{3} + (-2)\right] \\ &= 8\frac{8}{15} - \left(-8\frac{8}{15}\right) \\ &= 17\frac{1}{15} \end{aligned}$$

Coordinate geometry in the (x, y) plane Exercise D, Question 6

Question:

A curve has parametric equations $x = 9t^{\frac{4}{3}}, y = t^{-\frac{1}{3}}, t > 0.$

(a) Show that $y \frac{dx}{dt} = a$, where *a* is a constant to be found.

(b) Work out $\int_{3}^{5} y \frac{dx}{dt} dt$.

Solution:

(a)
$$x = 9t^{\frac{4}{3}}, y = t^{-\frac{1}{3}}$$

 $\frac{dx}{dt} = 9 \times \frac{4}{3}t^{\frac{4}{3}} - 1 = 9 \times \frac{4}{3}t^{\frac{1}{3}} = 12t^{\frac{1}{3}}$
So $y^{\frac{dx}{dt}} = t^{-\frac{1}{3}} \times 12t^{\frac{1}{3}} = 12t^{-\frac{1}{3}} + \frac{1}{3} = 12t^{0} = 12$
So $a = 12$
(b) $\int_{3}^{5} y^{\frac{dx}{dt}} dt = \int_{3}^{5} 12 dt = \begin{bmatrix} 12t \end{bmatrix}_{3}^{5} = 12 (5) - 12 (3) = 24$

Coordinate geometry in the (x, y) plane

Solutionbank

Exercise D, Question 7

Ouestion:

(a) Show that $y \frac{dx}{dt} = pt$, where *p* is a constant to be found.

Edexcel AS and A Level Modular Mathematics

A curve has parametric equations $x = \sqrt{t}$, $y = 4\sqrt{t^3}$, t > 0.

(b) Work out
$$\int_{1}^{6} y \frac{dx}{dt} dt$$
.

Solution:

(a)
$$x = \sqrt{t}, y = 4\sqrt{t^3}$$

 $x = t^{\frac{1}{2}}$
 $\frac{dx}{dt} = \frac{1}{2}t^{\frac{1}{2}} - 1 = \frac{1}{2}t^{-\frac{1}{2}}$
 $y \frac{dx}{dt} = 4\sqrt{t^3} \times \frac{1}{2}t^{-\frac{1}{2}}$
 $= 4t^{\frac{3}{2}} \times \frac{1}{2}t^{-\frac{1}{2}}$
 $= 2t^{\frac{3}{2}} - \frac{1}{2}$
 $= 2t^1$
So $p = 2$
(b) $\int_{1}^{6}y \frac{dx}{dt} dt = \int_{1}^{6}2t dt = [t^2]_{1}^{6} = (6)^{2} - (1)^{2} = 35$

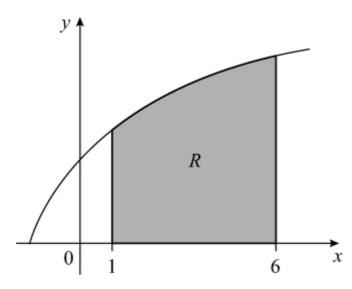
Coordinate geometry in the (x, y) plane Exercise D, Question 8

Question:

The diagram shows a sketch of the curve with parametric equations $x = t^2 - 3$, y = 3t, t > 0. The shaded region *R* is bounded by the curve, the *x*-axis and the lines x = 1 and x = 6.

(a) Find the value of *t* when
(i) x = 1
(ii) x = 6

(b) Find the area of *R*.



Solution:

```
(a) Substitute x = 1 into x = t^2 - 3

t^2 - 3 = 1

t^2 = 4

t = 2 (as t > 0)

Substitute x = 6 into x = t^2 - 3

t^2 - 3 = 6

t^2 = 9

t = 3 (as t > 0)

(b) \int_{-1}^{-6} y dx = \int_{-2}^{-3} y \frac{dx}{dt} dt
```

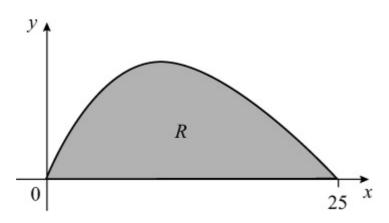
$$\frac{dx}{dt} = 2t$$

So $y \frac{dx}{dt} = 3t \times 2t = 6t^2$
 $\int_2^3 y \frac{dx}{dt} dt = \int_2^3 6t^2 dt$
 $= [2t^3]_2^3$
 $= 2(3)^3 - 2(2)^3$
 $= 54 - 16$
 $= 38$

Coordinate geometry in the (x, y) plane Exercise D, Question 9

Question:

The diagram shows a sketch of the curve with parametric equations $x = 4t^2$, y = t (5 - 2t), $t \ge 0$. The shaded region *R* is bounded by the curve and the *x*-axis. Find the area of *R*.



Solution:

When x = 0 $4t^2 = 0$ $t^2 = 0$ t = 0When x = 25 $4t^2 = 25$ $t^2 = \frac{25}{4}$ $t = \sqrt{\frac{25}{4}}$ $t = \frac{5}{2}$ (as $t \ge 0$) So $\int_0^{25} y dx = \int_0^{\frac{5}{2}} y \frac{dx}{dt} dt$ $\frac{dx}{dt} = 8t$ So $y \frac{dx}{dt} = t (5-2t) \times 8t = 8t^2 (5-2t) = 40t^2 - 16t^3$

$$\int_{0}^{5} \frac{5}{2}y \frac{dx}{dt} dt = \int_{0}^{5} \frac{5}{2} 40t^{2} - 16t^{3} dt$$

$$= \left[\frac{40}{3}t^{3} - 4t^{4} \right]_{0}^{5} \frac{5}{2}$$

$$= \left[\frac{40}{3} \left(\frac{5}{2} \right)^{3} - 4 \left(\frac{5}{2} \right)^{4} \right] - \left[\frac{40}{3} (0)^{3} - 4 (0)^{4} \right]$$

$$= 52 \frac{1}{12} - 0$$

$$= 52 \frac{1}{12}$$

Coordinate geometry in the (x, y) plane Exercise D, Question 10

Question:

The region *R* is bounded by the curve with parametric equations $x = t^3$, $y = \frac{1}{3t^2}$,

the *x*-axis and the lines x = -1 and x = -8.

(a) Find the value of *t* when

(i) x = -1(ii) x = -8

(b) Find the area of *R*.

Solution:

(a) (i) Substitute
$$x = -1$$
 into $x = t^3$
 $t^3 = -1$
 $t = \sqrt[3]{-1}$
 $t = -1$
(ii) Substitute $x = -8$ into $x = t^3$
 $t^3 = -8$
 $t = \sqrt[3]{-8}$
 $t = -2$

(b)
$$R = \int_{-8}^{-1} y dx = \int_{-2}^{-1} y \frac{dx}{dt} dt$$

 $\frac{dx}{dt} = 3t^2$
So $y \frac{dx}{dt} = \frac{1}{3t^2} \times 3t^2 = 1$
 $\int_{-2}^{-1} y \frac{dx}{dt} dt = \int_{-2}^{-1} 1 dt = \begin{bmatrix} t \end{bmatrix}_{-2}^{-1} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} - \begin{bmatrix} -2 \\ -2 \end{bmatrix}$
 $= -1 + 2 = 1$

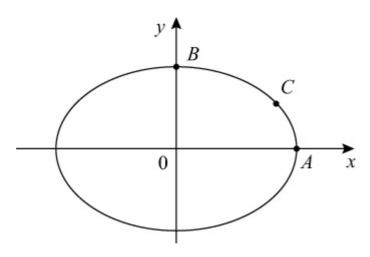
Coordinate geometry in the (x, y) plane Exercise E, Question 1

Question:

The diagram shows a sketch of the curve with parametric equations $x = 4 \cos t$, $y = 3 \sin t$, $0 \le t < 2\pi$.

- (a) Find the coordinates of the points A and B.
- (b) The point *C* has parameter $t = \frac{\pi}{6}$. Find the exact coordinates of *C*.

(c) Find the cartesian equation of the curve.



Solution:

(a) (1) At A, $y = 0 \Rightarrow 3 \sin t = 0 \Rightarrow \sin t = 0$ So t = 0 and $t = \pi$ Substitute t = 0 and $t = \pi$ into $x = 4 \cos t$ $t = 0 \Rightarrow x = 4 \cos(0) = 4 \times 1 = 4$ $t = \pi \Rightarrow x = 4 \cos \pi = 4 \times (-1) = -4$ So the coordinates of A are (4, 0). (2) At B, $x = 0 \Rightarrow 4 \cos t = 0 \Rightarrow \cos t = 0$ So $t = \frac{\pi}{2}$ and $t = \frac{3\pi}{2}$ Substitute $t = \frac{\pi}{2}$ and $t = \frac{3\pi}{2}$ into $y = 3 \sin t$

$$t = \frac{\pi}{2} \implies y = 3 \sin\left(\frac{\pi}{2}\right) = 3 \times 1 = 3$$
$$t = \frac{3\pi}{2} \implies y = 3 \sin\left(\frac{3\pi}{2}\right) = 3 \times -1 = -3$$

So the coordinates of B are (0, 3)

(b) Substitute
$$t = \frac{\pi}{6}$$
 into $x = 4 \cos t$ and $y = 3 \sin t$
 $x = 4 \cos \left(\frac{\pi}{6}\right) = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$
 $y = 3 \sin \left(\frac{\pi}{6}\right) = 3 \times \frac{1}{2} = \frac{3}{2}$
So the coordinates of *C* are $\left(2\sqrt{3}, \frac{3}{2}\right)$

(c)
$$x = 4 \cos t$$
, $y = 3 \sin t$
 $\cos t = \frac{x}{4}$ and $\sin t = \frac{y}{3}$
As $\sin^2 t + \cos^2 t = 1$
 $\left(\frac{y}{3}\right)^2 + \left(\frac{x}{4}\right)^2 = 1$ or $\left(\frac{x}{4}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$

Coordinate geometry in the (x, y) plane Exercise E, Question 2

Question:

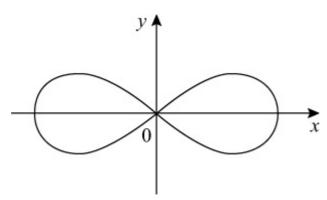
The diagram shows a sketch of the curve with parametric equations $x = \cos t$,

 $y = \frac{1}{2} \sin 2t$. $0 \le t < 2\pi$. The curve is symmetrical about both axes.

(a) Copy the diagram and label the points having parameters $t = 0, t = \frac{\pi}{2}, t = \pi$

and $t = \frac{3\pi}{2}$.

(b) Show that the cartesian equation of the curve is $y^2 = x^2 (1 - x^2)$.



Solution:

(a) (1) Substitute t = 0 into $x = \cos t$ and $y = \frac{1}{2} \sin 2t$

$$x = \cos 0 = 1$$

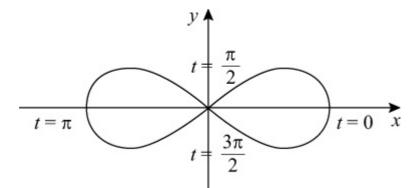
$$y = \frac{1}{2} \sin \left(2 \times 0 \right) = \frac{1}{2} \sin 0 = \frac{1}{2} \times 0 = 0$$

So when $t = 0$, $(x, y) = (1, 0)$
(2) Substitute $t = \frac{\pi}{2}$ into $x = \cos t$ and $y = \frac{1}{2} \sin 2t$

$$x = \cos \frac{\pi}{2} = 0$$

$$y = \frac{1}{2} \sin \left(2 \times \frac{\pi}{2} \right) = \frac{1}{2} \sin \pi = \frac{1}{2} \times 0 = 0$$

So when
$$t = \frac{\pi}{2}$$
, $(x, y) = (0, 0)$
(3) Substitute $t = \pi$ into $x = \cos t$ and $y = \frac{1}{2} \sin 2t$
 $x = \cos \pi = -1$
 $y = \frac{1}{2} \sin \left(2\pi\right) = \frac{1}{2} \times 0 = 0$
So when $t = \pi$, $(x, y) = (-1, 0)$
(4) Substitute $t = \frac{3\pi}{2}$ into $x = \cos t$ and $y = \frac{1}{2} \sin 2t$
 $x = \cos \frac{3\pi}{2} = 0$
 $y = \frac{1}{2} \sin \left(2 \times \frac{3\pi}{2}\right) = \frac{1}{2} \sin \left(3\pi\right) = \frac{1}{2} \times 0 =$
So when $t = \frac{3\pi}{2}$, $(x, y) = (0, 0)$



(b)
$$y = \frac{1}{2} \sin 2t = \frac{1}{2} \times 2 \sin t \cos t = \sin t \cos t$$

As $x = \cos t$
 $y = \sin t \times x$
 $y = x \sin t$
Now $\sin^2 t + \cos^2 t = 1$
So $\sin^2 t + x^2 = 1$
 $\Rightarrow \sin^2 t = 1 - x^2$
 $\Rightarrow \sin t = \sqrt{1 - x^2}$
So $y = x\sqrt{1 - x^2}$ or $y^2 = x^2(1 - x^2)$

0

Coordinate geometry in the (x, y) **plane** Exercise E, Question 3

Question:

A curve has parametric equations $x = \sin t$, $y = \cos 2t$, $0 \le t < 2\pi$.

(a) Find the cartesian equation of the curve. The curve cuts the *x*-axis at (a, 0) and (b, 0).

(b) Find the value of *a* and *b*.

Solution:

(a)
$$x = \sin t$$
, $y = \cos 2t$
As $\cos 2t = 1 - 2 \sin^2 t$
 $y = 1 - 2x^2$

(b) Substitute
$$y = 0$$
 into $y = 1 - 2x^2$
 $0 = 1 - 2x^2$
 $2x^2 = 1$
 $x^2 = \frac{1}{2}$
 $x = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{1}}{\sqrt{2}} = \pm \frac{1}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
So the curve meets the x-axis at $\left(\frac{\sqrt{2}}{2}, 0\right)$ and $\left(-\frac{\sqrt{2}}{2}, 0\right)$

file://C:\Users\Buba\Desktop\further\Core Mathematics 4\content\sb\content\c4_2_e_4.h... 3/6/2013

Solutionbank Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) **plane** Exercise E, Question 4

Question:

A curve has parametric equations $x = \frac{1}{1+t}$, $y = \frac{1}{(1+t)(1-t)}$, $t \neq \pm 1$.

Express t in terms of x. Hence show that the cartesian equation of the curve is $\frac{1}{2}$

 $y = \frac{x^2}{2x - 1}.$

Solution:

$$(1) x = \frac{1}{1+t}$$

$$x \times \left(1+t\right) = \frac{1}{(1+t)} \times \left(1+t\right)$$
Multiply each side by $(1+t)$

$$x (1+t) = 1$$
Simplify
$$\frac{x(1+t)}{x} = \frac{1}{x}$$
Divide each side by x

$$1+t = \frac{1}{x}$$
Simplify
So $t = \frac{1}{x} - 1$
Substitute $t = \frac{1}{x} - 1$ into $y = \frac{1}{(1+t)(1-t)}$

$$y = \frac{1}{(1+\frac{1}{x}-1)[1-(\frac{1}{x}-1)]}$$

$$= \frac{1}{\frac{1}{x}(1-\frac{1}{x}+1)}$$

$$= \frac{1}{\frac{1}{x}(2-\frac{1}{x})}$$

$$= \frac{1}{\frac{1}{x} \left(\frac{2x}{x} - \frac{1}{x}\right)}$$

$$= \frac{1}{\frac{1}{x} \left(\frac{2x-1}{x}\right)}$$

$$= \frac{1}{\left(\frac{2x-1}{x^2}\right)}$$

$$= \frac{x^2}{2x-1} \left(\text{Remember } \frac{1}{\left(\frac{a}{b}\right)} = \frac{b}{a} \right)$$
So the cartesian equation of the curve is $y = \frac{x^2}{2x-1}$.

Coordinate geometry in the (x, y) plane Exercise E, Question 5

Question:

A circle has parametric equations $x = 4 \sin t - 3$, $y = 4 \cos t + 5$.

(a) Find the cartesian equation of the circle.

(b) Draw a sketch of the circle.

(c) Find the exact coordinates of the points of intersection of the circle with the *y*-axis.

Solution:

```
(a) x = 4 \sin t - 3, y = 4 \cos t + 5

4 \sin t = x + 3

\sin t = \frac{x+3}{4}

and

4 \cos t = y - 5

\cos t = \frac{y-5}{4}

As \sin^2 t + \cos^2 t = 1

\left(\frac{x+3}{4}\right)^2 + \left(\frac{y-5}{4}\right)^2 = 1

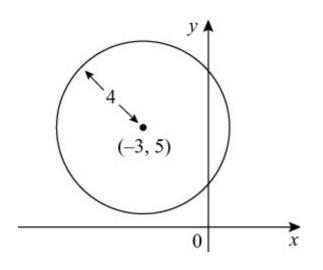
\frac{(x+3)^2}{4^2} + \frac{(y-5)^2}{4^2} = 1

\frac{(x+3)^2}{4^2} \times 4^2 + \frac{(y-5)^2}{4^2} \times 4^2 = 1 \times 4^2

(x+3)^2 + (y-5)^2 = 4^2 or (x+3)^2 + (y-5)^2 = 16

(b) The circle (x+3)^2 + (y-5)^2 = 4^2 has centre (-3, 5) and
```

radius 4.



(c) Substitute
$$x = 0$$
 into $(x + 3)^{2} + (y - 5)^{2} = 4^{2}$
 $(0 + 3)^{2} + (y - 5)^{2} = 4^{2}$
 $3^{2} + (y - 5)^{2} = 4^{2}$
 $9 + (y - 5)^{2} = 16$
 $(y - 5)^{2} = 7$
 $y - 5 = \pm \sqrt{7}$
 $y = 5 \pm \sqrt{7}$
So the circle meets the y-axis at $(0, 5 + \sqrt{7})$ and $(0, 5 - \sqrt{7})$.

Coordinate geometry in the (x, y) **plane** Exercise E, Question 6

Question:

Find the cartesian equation of the line with parametric equations $x = \frac{2-3t}{1+t}$, y =

$$\frac{3+2t}{1+t}, t \neq -1.$$

Solution:

$$x = \frac{2-3t}{1+t}$$

$$x \left(1+t\right) = \frac{2-3t}{(1+t)} \times \left(1+t\right)$$

$$x (1+t) = 2-3t$$

$$x + xt = 2-3t$$

$$x + xt + 3t = 2$$

$$xt + 3t = 2 - x$$

$$t (x+3) = 2 - x$$

$$t \frac{(x+3)}{(x+3)} = \frac{2-x}{x+3}$$

$$t = \frac{2-x}{x+3}$$

Substitute $t = \frac{2-x}{x+3}$ into $y = \frac{3+2t}{1+t}$

$$y = \frac{3 + 2\left(\frac{2 - x}{x + 3}\right)}{1 + \left(\frac{2 - x}{x + 3}\right)}$$
$$= \frac{3 + 2\left(\frac{2 - x}{x + 3}\right)}{1 + \left(\frac{2 - x}{x + 3}\right)} \times \frac{(x + 3)}{(x + 3)}$$

$$= \frac{3 \times (x+3) + 2(\frac{2-x}{x+3}) \times (x+3)}{1 \times (x+3) + (\frac{2-x}{x+3}) \times (x+3)}$$
$$= \frac{3(x+3) + 2(2-x)}{(x+3) + (2-x)}$$
$$= \frac{3x+9+4-2x}{x+3+2-x}$$
$$= \frac{x+13}{5}$$
So $y = \frac{x}{5} + \frac{13}{5}$

Solutionbank

Edexcel AS and A Level Modular Mathematics

Coordinate geometry in the (x, y) plane Exercise E, Question 7

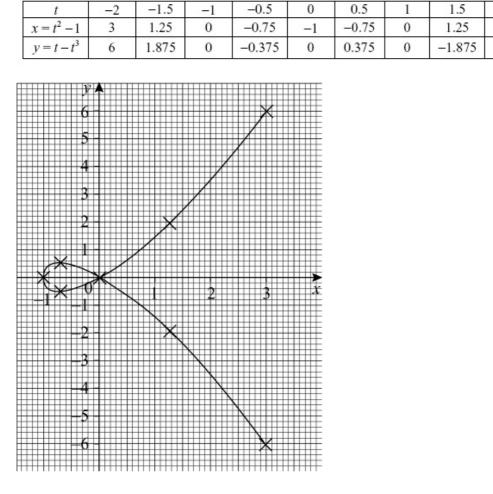
Question:

A curve has parametric equations $x = t^2 - 1$, $y = t - t^3$, where t is a parameter.

(a) Draw a graph of the curve for $-2 \leq t \leq 2$.

(b) Find the area of the finite region enclosed by the loop of the curve.

Solution:



(b) $A = 2 \int_{-1}^{0} y dx = 2 \int_{0}^{1} y \frac{dx}{dt} dt$, When x = -1, $t^2 - 1 = -1$, So t = 0When x = 0, $t^2 - 1 = 0$, So t = 1

$$\frac{dx}{dt} = 2t$$

So $y \frac{dx}{dt} = \left(t - t^3\right) \times 2t = 2t^2 - 2t^4$
Therefore $A = 2 \int_0^1 2t^2 - 2t^4 dt$

2

3

-6

$$= 2 \left[\frac{2}{3}t^3 - \frac{2}{5}t^5 \right]_0^1$$

$$= 2 \left(\left[\frac{2}{3}(1)^3 - \frac{2}{5}(1)^5 \right] - \left[\frac{2}{3}(0)^3 - \frac{2}{5}(0)^5 \right] \right)$$

$$= 2 \left[\left(\frac{2}{3} - \frac{2}{5} \right) - 0 \right]$$

$$= 2 \times \frac{4}{15}$$

$$= \frac{8}{15}$$
so of the loop is $\frac{8}{15}$

So the area of the loop is $\frac{\circ}{15}$.

Coordinate geometry in the (x, y) **plane** Exercise E, Question 8

Question:

A curve has parametric equations $x = t^2 - 2$, y = 2t, where $-2 \le t \le 2$.

(a) Draw a graph of the curve.

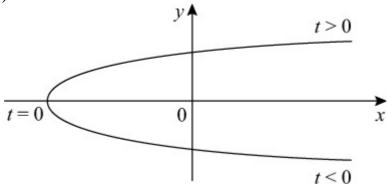
(b) Indicate on your graph where

- (i) t = 0
- (ii) t > 0
- (iii) *t* < 0

(c) Calculate the area of the finite region enclosed by the curve and the y-axis.

Solution:

(a)



(b) (i) When t = 0, y = 2 (0) = 0.

This is where the curve meets the *x*-axis.

(ii) When t > 0, y > 0.

This is where the curve is above the *x*-axis.

(iii) When t < 0, y < 0.

This is where the curve is below the *x*-axis.

(c) $A = 2 \int_{-2}^{0} y dx = 2 \int_{0}^{\sqrt{2}} y \frac{dx}{dt} dt$, When x = -2, $t^2 - 2 = -2$, so t = 0When x = 0, $t^2 - 2 = 0$, so $t = \sqrt{2}$

 $\frac{\mathrm{d}x}{\mathrm{d}t} = 2t$

So
$$y \frac{dx}{dt} = 2t \times 2t = 4t^2$$

Therefore $A = 2 \int_0^{\sqrt{2}} 4t^2 dt$
 $= 2 \begin{bmatrix} \frac{4}{3}t^3 \end{bmatrix}_0^{\sqrt{2}}$
 $= 2 \begin{bmatrix} \frac{4}{3}(\sqrt{2})^3 - \frac{4}{3}(0)^3 \end{bmatrix}$
 $= 2 \times \frac{4}{3}(\sqrt{2})^3$
 $= \frac{8}{3}(\sqrt{2})^3$
 $= \frac{16}{3}\sqrt{2}$, As $(\sqrt{2})^3 = (\sqrt{2} \times \sqrt{2}) \times \sqrt{2} = 2\sqrt{2}$

Coordinate geometry in the (x, y) plane Exercise E, Question 9

Question:

Find the area of the finite region bounded by the curve with parametric equations $x = t^3$, $y = \frac{4}{t}$, $t \neq 0$, the *x*-axis and the lines x = 1 and x = 8.

Solution:

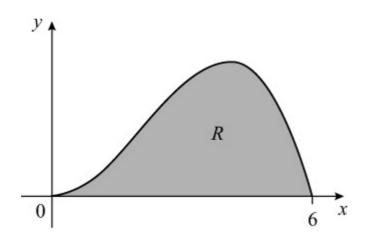
(1) When
$$x = 1$$
, $t^3 = 1$, so $t = \sqrt[3]{1} = 1$
When $x = 8$, $t^3 = 8$, so $t = \sqrt[3]{8} = 2$
(2) $A = \int_{1}^{8} y dx = \int_{1}^{2} y \frac{dx}{dt} dt$
(3) $\frac{dx}{dt} = 3t^2$
So $y \frac{dx}{dt} = \frac{4}{t} \times 3t^2 = 12t$
Therefore $A = \int_{1}^{2} 12t dt$
 $= [6t^2]_{1}^{2}$
 $= 6(2)^2 - 6(1)^2$
 $= 18$

Coordinate geometry in the (x, y) **plane** Exercise E, Question 10

Question:

The diagram shows a sketch of the curve with parametric equations $x = 3\sqrt{t}$, y = t(4 - t), where $0 \le t \le 4$. The region *R* is bounded by the curve and the *x*-axis.

- (a) Show that $y \frac{dx}{dt} = 6t \frac{1}{2} \frac{3}{2}t \frac{3}{2}$.
- (b) Find the area of *R*.



Solution:

(a)
$$x = 3\sqrt{t} = 3t^{\frac{1}{2}}$$

 $\frac{dx}{dt} = \frac{1}{2} \times 3t^{\frac{1}{2}-1} = \frac{3}{2}t^{-\frac{1}{2}}$
 $y \frac{dx}{dt} = t \left(4 - t\right) \times \frac{3}{2}t^{-\frac{1}{2}}$
 $= \left(4t - t^{2}\right) \times \frac{3}{2}t^{-\frac{1}{2}}$
 $= 4t \times \frac{3}{2}t^{-\frac{1}{2}} - t^{2} \times \frac{3}{2}t^{-\frac{1}{2}}$
 $= 6t^{1-\frac{1}{2}} - \frac{3}{2}t^{2-\frac{1}{2}}$
 $= 6t^{\frac{1}{2}} - \frac{3}{2}t^{\frac{3}{2}}$

(b)
$$A = \int_{0}^{4} y \frac{dx}{dt} dt$$

$$= \int_{0}^{4} 6t^{\frac{1}{2}} - \frac{3}{2}t^{\frac{3}{2}} dt$$

$$= \left[\frac{6t^{\frac{3}{2}}}{(\frac{3}{2})} - \frac{\frac{3}{2}t^{\frac{5}{2}}}{(\frac{5}{2})} \right]_{0}^{4}$$

$$= \left[4t^{\frac{3}{2}} - \frac{3}{5}t^{\frac{5}{2}} \right]_{0}^{4}$$

$$= \left[4(4)^{\frac{3}{2}} - \frac{3}{5}(4)^{\frac{5}{2}} \right] - \left[4(0)^{\frac{3}{2}} - \frac{3}{5}(0)^{\frac{5}{2}} \right]$$

$$= \left(4 \times 8 - \frac{3}{5} \times 32 \right) - 0$$

$$= 32 - 19^{\frac{1}{5}}$$

$$= 12^{\frac{4}{5}}$$