Exercise A, Question 1

Question:

Show that each of these equations f(x) = 0 has a root in the given interval(s):

(a) $x^3 - x + 5 = 0$ -2 < x < -1. (b) $3 + x^2 - x^3 = 0$ 1 < x < 2. (c) $x^2 - \sqrt{x - 10} = 0$ 3 < x < 4. (d) $x^3 - \frac{1}{x} - 2 = 0$ -0.5 < x < -0.2 and 1 < x < 2. (e) $x^5 - 5x^3 - 10 = 0$ -2 < x < -1.8, -1.8 < x < -1 and 2 < x < 3. (f) $\sin x - \ln x = 0$ 2.2 < x < 2.3(g) $e^x - \ln x - 5 = 0$ 1.65 < x < 1.75. (h) $\sqrt[3]{x} - \cos x = 0$ 0.5 < x < 0.6.

Solution:

(a) Let $f(x) = x^3 - x + 5$ $f(-2) = (-2)^3 - (-2) + 5 = -8 + 2 + 5 = -1$ $f(-1) = (-1)^3 - (-1) + 5 = -1 + 1 + 5 = 5$ f(-2) < 0 and f(-1) > 0 so there is a change of sign. \Rightarrow There is a root between x = -2 and x = -1.

(b) Let $f(x) = 3 + x^2 - x^3$ $f(1) = 3 + (1)^2 - (1)^3 = 3 + 1 - 1 = 3$ $f(2) = 3 + (2)^2 - (2)^3 = 3 + 4 - 8 = -1$ f(1) > 0 and f(2) < 0 so there is a change of sign. \Rightarrow There is a root between x = 1 and x = 2.

(c) Let f (x) = $x^2 - \sqrt{x} - 10$ f (3) = $3^2 - \sqrt{3} - 10 = -2.73$ f (4) = $4^2 - \sqrt{4} - 10 = 4$ f (3) < 0 and f (4) > 0 so there is a change of sign. \Rightarrow There is a root between x = 3 and x = 4.

(d) Let f (x) = $x^3 - \frac{1}{x} - 2$ **[1]** f (-0.5) = (-0.5)³ - $\frac{1}{-0.5}$ - 2 = -0.125 f (-0.2) = (-0.2) $^3 - \frac{1}{-0.2} - 2 = 2.992$ f (-0.5) < 0 and f (-0.2) > 0 so there is a change of sign. There is a root between x = -0.5 and x = -0.2. \Rightarrow **[2]** f (1) = (1) ³ - $\frac{1}{1}$ - 2 = -2 f (2) = (2) ³ - $\frac{1}{2}$ - 2 = 5 $\frac{1}{2}$ f(1) < 0 and f(2) > 0 so there is a change of sign. There is a root between x = 1 and x = 2. \Rightarrow (e) Let $f(x) = x^5 - 5x^3 - 10$ **[1]** f (-2) = (-2)⁵ - 5 (-2)³ - 10 = -2 $f(-1.8) = (-1.8)^{5} - 5(-1.8)^{3} - 10 = 0.26432$ f (-2) < 0 and f (-1.8) > 0 so there is a change of sign. There is a root between x = -2 and x = -1.8. \Rightarrow [2] f (-1.8) = 0.26432 $f(-1) = (-1)^{5} - 5(-1)^{3} - 10 = -6$ f(-1.8) > 0 and f(-1) < 0 so there is a change of sign. There is a root between x = -1.8 and x = -1. \Rightarrow **[3]** $f(2) = (2)^{5} - 5(2)^{3} - 10 = -18$ $f(3) = (3)^5 - 5(3)^3 - 10 = 98$ f(2) < 0 and f(3) > 0 so there is a change of sign. There is a root between x = 2 and x = 3. \Rightarrow (f) Let f (x) = $\sin x - \ln x$ f (2.2) = $\sin 2.2 - \ln 2.2 = 0.0200$ f(2.3) = -0.0872f(2.2) > 0 and f(2.3) < 0 so there is a change of sign.

Page 3 of 3

 \Rightarrow There is a root between x = 2.2 and x = 2.3.

(g) Let $f(x) = e^x - \ln x - 5$ $f(1.65) = e^{1.65} - \ln 1.65 - 5 = -0.294$ $f(1.75) = e^{1.75} - \ln 1.75 - 5 = 0.195$ f(1.65) < 0 and f(1.75) > 0 so there is a change of sign. \Rightarrow There is a root between x = 1.65 and x = 1.75. (h) Let $f(x) = \sqrt[3]{x} - \cos x$

f (0.5) =
$$\sqrt[3]{0.5} - \cos 0.5 = -0.0839$$

f (0.6) = $\sqrt[3]{0.6} - \cos 0.6 = 0.0181$
f (0.5) < 0 and f (0.6) > 0 so there is a change of sign.
 \Rightarrow There is a root between $x = 0.5$ and $x = 0.6$.

Exercise A, Question 2

Question:

Given that f (x) = $x^3 - 5x^2 + 2$, show that the equation f (x) = 0 has a root near to x = 5.

Solution:

Let $f(x) = x^3 - 5x^2 + 2$ $f(4.9) = (4.9)^3 - 5(4.9)^2 + 2 = -0.401$ f(5.0) = 2 f(4.9) < 0 and f(5) > 0 so there is a change of sign. \Rightarrow There is a root between x = 4.9 and x = 5.

Exercise A, Question 3

Question:

Given that f (x) $\equiv 3 - 5x + x^3$, show that the equation f (x) = 0 has a root x = a, where *a* lies in the interval 1 < a < 2.

Solution:

Let $f(x) = 3 - 5x + x^3$ $f(1) = 3 - 5(1) + (1)^3 = -1$ $f(2) = 3 - 5(2) + (2)^3 = 1$ f(1) < 0 and f(2) > 0 so there is a change of sign. \Rightarrow There is a root between x = 1 and x = 2. So if the root is x = a, then 1 < a < 2.

Exercise A, Question 4

Question:

Given that f (x) $\equiv e^x \sin x - 1$, show that the equation f (x) = 0 has a root x = r, where r lies in the interval 0.5 < r < 0.6.

Solution:

 $f(x) = e^{x} \sin x - 1$ $f(0.5) = e^{0.5} \sin 0.5 - 1 = -0.210$ $f(0.6) = e^{0.6} \sin 0.6 - 1 = 0.0288$ f(0.5) < 0 and f(0.6) > 0 so there is a change of sign. $\Rightarrow \text{ There is a root between } x = 0.5 \text{ and } x = 0.6.$ So if the root is x = r, then 0.5 < r < 0.6.

Exercise A, Question 5

Question:

It is given that f (x) $\equiv x^3 - 7x + 5$.

(a) Copy and complete the table below.

x	-3	-2	-1	0	1	2	3
f(<i>x</i>)	i i	1			((

(b) Given that the negative root of the equation $x^3 - 7x + 5 = 0$ lies between α and $\alpha + 1$, where α is an integer, write down the value of α .

Solution:

(a)

x	-3	-2	-1	0	1	2	3
f(x)	-1	11	11	5	-1	-1	11

(b) $f\left(-3 \right) < 0$ and $f\left(-2 \right) > 0$ so there is a change of sign.

 \Rightarrow There is a root between x = -3 and x = -2.

So $\alpha = -3$. (Note. $\alpha + 1 = -2$).

Exercise A, Question 6

Question:

Given that $f(x) \equiv x - (\sin x + \cos x)^{\frac{1}{2}}, \quad 0 \leq x \leq \frac{3}{4}\pi$, show that the equation f(x) = 0 has a root lying between $\frac{\pi}{3}$ and $\frac{\pi}{2}$.

Solution:

$$f(x) = x - (\sin x + \cos x)^{\frac{1}{2}}$$

$$f\left(\frac{\pi}{3}\right) = \frac{\pi}{3} - \left(\sin \frac{\pi}{3} + \cos \frac{\pi}{3}\right)^{\frac{1}{2}} = -0.122$$

$$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} - \left(\sin \frac{\pi}{2} + \cos \frac{\pi}{2}\right)^{\frac{1}{2}} = 0.571$$

$$f\left(\frac{\pi}{3}\right) < 0 \text{ and } f\left(\frac{\pi}{2}\right) > 0 \text{ so there is a change of sign.}$$

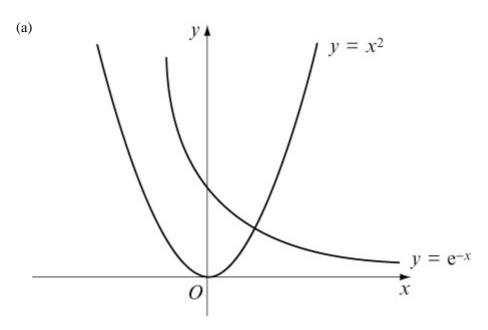
$$\Rightarrow \text{ There is a root between } x = \frac{\pi}{3} \text{ and } x = \frac{\pi}{2}.$$

Exercise A, Question 7

Question:

- (a) Using the same axes, sketch the graphs of $y = e^{-x}$ and $y = x^2$.
- (b) Explain why the equation $e^{-x} = x^2$ has only one root.

(c) Show that the equation $e^{-x} = x^2$ has a root between x = 0.70 and x = 0.71. Solution:



(b) The curves meet where $e^{-x} = x^2$

The curves meet at one point, so there is one value of x that satisfies the equation $e^{-x} = x^2$.

So $e^{-x} = x^2$ has one root.

(c) Let $f(x) = e^{-x} - x^2$ $f(0.70) = e^{-0.70} - 0.70^2 = 0.00659$ $f(0.71) = e^{-0.71} - 0.71^2 = -0.0125$ f(0.70) > 0 and f(0.71) < 0 so there is a change of sign. \Rightarrow There is a root between x = 0.70 and x = 0.71.

Exercise A, Question 8

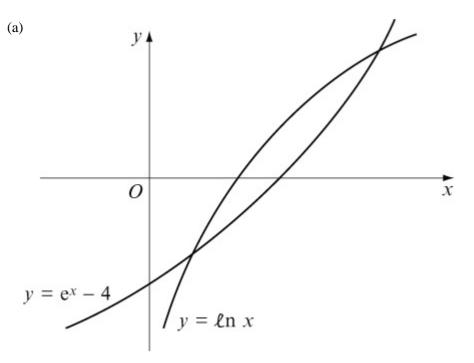
Question:

(a) On the same axes, sketch the graphs of $y = \ln x$ and $y = e^x - 4$.

(b) Write down the number of roots of the equation $\ln x = e^x - 4$.

(c) Show that the equation $\ln x = e^x - 4$ has a root in the interval (1.4, 1.5).

Solution:



(b) The curves meet at two points, so there are two values of x that satisfy the equation $\ln x = e^x - 4$. So $\ln x = e^x - 4$ has two roots.

(c) Let $f(x) = \ln x - e^x + 4$ $f(1.4) = \ln 1.4 - e^{1.4} + 4 = 0.281$ $f(1.5) = \ln 1.5 - e^{1.5} + 4 = -0.0762$ f(1.4) > 0 and f(1.5) < 0 so there is a change of sign. \Rightarrow There is a root between x = 1.4 and x = 1.5.

Exercise A, Question 9

Question:

(a) On the same axes, sketch the graphs of $y = \sqrt{x}$ and $y = \frac{2}{x}$.

(b) Using your sketch, write down the number of roots of the equation $\sqrt{x} = \frac{2}{x}$.

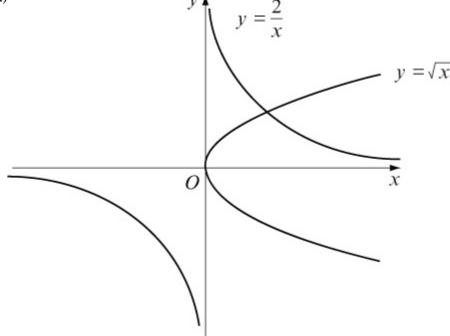
(c) Given that $f(x) \equiv \sqrt{x - \frac{2}{x}}$, show that f(x) = 0 has a root *r*, where *r* lies between x = 1 and x = 2.

(d) Show that the equation $\sqrt{x} = \frac{2}{x}$ may be written in the form $x^p = q$, where p and q are integers to be found.

(e) Hence write down the exact value of the root of the equation $\sqrt{x} - \frac{2}{x} = 0$.

Solution:

(a)



(b) The curves meet at one point, so there is one value of x that satisfies the

equation
$$\sqrt{x} = \frac{2}{x}$$
.
So $\sqrt{x} = \frac{2}{x}$ has one root.
(c) $f(x) = \sqrt{x} - \frac{2}{x}$
 $f(1) = \sqrt{1 - \frac{2}{1}} = -1$
 $f(2) = \sqrt{2 - \frac{2}{2}} = 0.414$
 $f(1) < 0$ and $f(2) > 0$ so there is a change of sign.
 \Rightarrow There is a root between $x = 1$ and $x = 2$.
(d) $\sqrt{x} = \frac{2}{x}$
 $x^{\frac{1}{2}} = \frac{2}{x}$
 $x^{\frac{1}{2}} = \frac{2}{x}$
 $x^{\frac{1}{2}} = \frac{2}{x}$
 $x^{\frac{1}{2}} = 2$
 $(x^{\frac{3}{2}})^{2} = 2^{2}$
 $(x^{\frac{3}{2}})^{2} = 2^{2}$
 $x^{3} = 4$
So $p = 3$ and $q = 4$
(c) $x^{\frac{3}{2}} = 2$
 $\Rightarrow x = 2^{\frac{2}{3}}$ $[= (2^{2})^{\frac{1}{3}} = 4^{\frac{1}{3}}]$

Exercise A, Question 10

Question:

(a) On the same axes, sketch the graphs of $y = \frac{1}{x}$ and y = x + 3.

(b) Write down the number of roots of the equation $\frac{1}{x} = x + 3$.

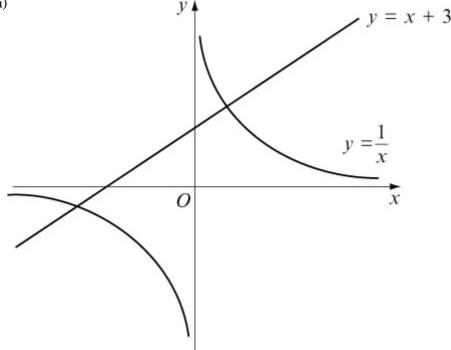
(c) Show that the positive root of the equation $\frac{1}{x} = x + 3$ lies in the interval (0.30, 0.31).

(d) Show that the equation $\frac{1}{x} = x + 3$ may be written in the form $x^2 + 3x - 1 = 0$.

(e) Use the quadratic formula to find the positive root of the equation $x^2 + 3x - 1 = 0$ to 3 decimal places.

Solution:

(a)



(b) The line meets the curve at two points, so there are two values of x that satisfy the equation $\frac{1}{x} = x + 3$.

So
$$\frac{1}{x} = x + 3$$
 has two roots.
(c) Let $f(x) = \frac{1}{x} - x - 3$
 $f(0.30) = \frac{1}{0.30} - (0.30) - 3 = 0.0333$
 $f(0.31) = \frac{1}{0.31} - (0.31) - 3 = -0.0842$
 $f(0.30) > 0$ and $f(0.31) < 0$ so there is a change of sign.
 \Rightarrow There is a root between $x = 0.30$ and $x = 0.31$.
(d) $\frac{1}{x} = x + 3$
 $\frac{1}{x} \times x = x \times x + 3 \times x$ ($\times x$)
 $1 = x^2 + 3x$
So $x^2 + 3x - 1 = 0$
(e) Using $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ with $a = 1, b = 3, c = -1$
 $x = \frac{-(3) \pm \sqrt{(3)^2 - 4(1)(-1)}}{2(1)} = \frac{-3 \pm \sqrt{9 + 4}}{2} = \frac{-3 \pm \sqrt{13}}{2}$
So $x = \frac{-3 + \sqrt{13}}{2} = 0.303$
and $x = \frac{-3 - \sqrt{13}}{2} = -3.303$

The positive root is 0.303 to 3 decimal places.

Exercise B, Question 1

Question:

Show that $x^2 - 6x + 2 = 0$ can be written in the form:

(a)
$$x = \frac{x^2 + 2}{6}$$

(b) $x = \sqrt{6x - 2}$
(c) $x = 6 - \frac{2}{x}$

Solution:

(a) $x^2 - 6x + 2 = 0$ $6x = x^2 + 2$ Add 6x to each side $x = \frac{x^2 + 2}{6}$ Divide each side by 6

(b) $x^2 - 6x + 2 = 0$ $x^2 + 2 = 6x$ Add 6x to each side $x^2 = 6x - 2$ Subtract 2 from each side $x = \sqrt{6x - 2}$ Take the square root of each side

(c) $x^2 - 6x + 2 = 0$ $x^2 + 2 = 6x$ Add 6x to each side $x^2 = 6x - 2$ Subtract 2 from each side $\frac{x^2}{x} = \frac{6x}{x} - \frac{2}{x}$ Divide each term by x $x = 6 - \frac{2}{x}$ Simplify

Exercise B, Question 2

Question:

Show that $x^3 + 5x^2 - 2 = 0$ can be written in the form:

(a)
$$x = {}^{3}\sqrt{2 - 5x^{2}}$$

(b) $x = \frac{2}{x^{2}} - 5$
(c) $x = \sqrt{\frac{2 - x^{3}}{5}}$

Solution:

(a) $x^{3} + 5x^{2} - 2 =$ $x^{3} + 5x^{2} = 2$ A $x^{3} = 2 - 5x^{2}$ S $x = \sqrt[3]{2 - 5x^{2}}$	-
	Add 2 to each side subtract $5x^2$ from each side Divide each term by x^2
$x^2 = \frac{2 - x^3}{5}$ Di	
© Pearson Education Ltd 2008	

Exercise B, Question 3

Question:

Rearrange $x^3 - 3x + 4 = 0$ into the form $x = \frac{x^3}{3} + a$, where the value of *a* is to

be found.

Solution:

 $x^{3} - 3x + 4 = 0$ $3x = x^{3} + 4 \quad \text{Add } 3x \text{ to each side}$ $\frac{3x}{3} = \frac{x^{3}}{3} + \frac{4}{3} \quad \text{Divide each term by } 3$ $x = \frac{x^{3}}{3} + \frac{4}{3} \quad \text{Simplify}$ So $a = \frac{4}{3}$

Exercise B, Question 4

Question:

Rearrange $x^4 - 3x^3 - 6 = 0$ into the form $x = \sqrt[3]{px^4 - 2}$, where the value of *p* is to be found.

Solution:

 $x^{4} - 3x^{3} - 6 = 0$ $3x^{3} = x^{4} - 6 \quad \text{Add } 3x^{3} \text{ to each side}$ $\frac{3x^{3}}{3} = \frac{x^{4}}{3} - \frac{6}{3} \quad \text{Divide each term by 3}$ $x^{3} = \frac{x^{4}}{3} - 2 \quad \text{Simplify}$ $x = \sqrt[3]{\frac{x^{4}}{3} - 2} \quad \text{Take the cube root of each side}$ $\text{So } p = \frac{1}{3}$

Exercise B, Question 5

Question:

(a) Show that the equation $x^3 - x^2 + 7 = 0$ can be written in the form $x = \sqrt[3]{x^2 - 7}$.

(b) Use the iteration formula $x_{n+1} = x_n^2 - 7$, starting with $x_0 = 1$, to find x_2 to 1 decimal place.

Solution:

(a) $x^3 - x^2 + 7 = 0$ $x^3 + 7 = x^2$ Add x^2 to each side $x^3 = x^2 - 7$ Subtract 7 from each side $x = \sqrt[3]{x^2 - 7}$ Take the cube root of each side

(b)
$$x_0 = 1$$

 $x_1 = \sqrt[3]{(1)^2 - 7} = -1.817...$
 $x_2 = \sqrt[3]{(-1.817...)^2 - 7} = -1.546...$
So $x_2 = -1.5 (1 \text{ d.p.})$

Exercise B, Question 6

Question:

(a) Show that the equation $x^3 + 3x^2 - 5 = 0$ can be written in the form $x = \sqrt{\frac{5}{x+3}}$.

(b) Use the iteration formula $x_{n+1} = \sqrt{\frac{5}{x_n+3}}$, starting with $x_0 = 1$, to find x_4 to 3 decimal places.

Solution:

(a)
$$x^3 + 3x^2 - 5 = 0$$

 $x^2 (x + 3) - 5 = 0$ Factorise x^2
 $x^2 (x + 3) = 5$ Add 5 to each side
 $x^2 = \frac{5}{x+3}$ Divide each side by $(x + 3)$
 $x = \sqrt{\frac{5}{x+3}}$ Take the square root of each side

(b)
$$x_0 = 1$$

 $x_1 = \sqrt{\frac{5}{(1) + 3}} = 1.118...$
 $x_2 = \sqrt{\frac{5}{(1.118...) + 3}} = 1.101...$
 $x_3 = \sqrt{\frac{5}{(1.101...) + 3}} = 1.104...$
 $x_4 = \sqrt{\frac{5}{(1.104...) + 3}} = 1.103768...$
So $x_4 = 1.104$ (3 d.p.)

Exercise B, Question 7

Question:

(a) Show that the equation $x^6 - 5x + 3 = 0$ has a root between x = 1 and x = 1.5.

(b) Use the iteration formula $x_{n+1} = 5\sqrt{5 - \frac{3}{x_n}}$ to find an approximation for the root of the equation $x^6 - 5x + 3 = 0$, giving your answer to 2 decimal places.

Solution:

(a) Let $f(x) = x^6 - 5x + 3$ $f(1) = (1)^6 - 5(1) + 3 = -1$ $f(1.5) = (1.5)^6 - 5(1.5) + 3 = 6.89$ f(1) < 0 and f(1.5) > 0 so there is a change of sign. \Rightarrow There is a root between x = 1 and x = 1.5.

(b)
$$x_0 = 1$$

 $x_1 = \sqrt[5]{5 - \frac{3}{1}} = 1.148...$
Similarly,
 $x_2 = 1.190...$
 $x_3 = 1.199...$
 $x_4 = 1.200...$
 $x_5 = 1.201...$
So the root is 1.20 (2 d.p.)

Exercise B, Question 8

Question:

(a) Rearrange the equation $x^2 - 6x + 1 = 0$ into the form $x = p - \frac{1}{x}$, where *p* is a constant to be found.

(b) Starting with $x_0 = 3$, use the iteration formula $x_{n+1} = p - \frac{1}{x_n}$ with your value of *p*, to find x_3 to 2 decimal places.

Solution:

(a) $x^2 - 6x + 1 = 0$ $x^2 + 1 = 6x$ Add 6x to each side $x^2 = 6x - 1$ Subtract 1 from each side $\frac{x^2}{x} = \frac{6x}{x} - \frac{1}{x}$ Divide each term by x $x = 6 - \frac{1}{x}$ Simplify So p = 6(b) $x_0 = 3$ $x_1 = 6 - \frac{1}{3} = 5.666...$ $x_2 = 6 - \frac{1}{5.666...} = 5.823...$ $x_3 = 6 - \frac{1}{5.823...} = 5.828...$ So $x_3 = 5.83$ (2 d.p.)

Exercise B, Question 9

Question:

(a) Show that the equation $x^3 - x^2 + 8 = 0$ has a root in the interval (-2, -1).

(b) Use a suitable iteration formula to find an approximation to 2 decimal places for the negative root of the equation $x^3 - x^2 + 8 = 0$.

Solution:

(a) Let $f(x) = x^3 - x^2 + 8$ $f(-2) = (-2)^3 - (-2)^2 + 8 = -8 - 4 + 8 = -4$ $f(-1) = (-1)^3 - (-1)^2 + 8 = -1 - 1 + 8 = 6$ f(-2) < 0 and f(-1) > 0 so there is a change of sign. \Rightarrow There is a root between x = -2 and x = -1.

(b) $x^3 - x^2 + 8 = 0$ $x^3 + 8 = x^2$ Add x^2 to each side $x^3 = x^2 - 8$ Subtract 8 from each side $x = \sqrt[3]{x^2 - 8}$ Take the cube root of each side Using $x_{n+1} = \sqrt[3]{x_{\text{ n}}^2 - 8}$ and any value for x_0 , the root is -1.72 (2 d.p.).

Exercise B, Question 10

Question:

(a) Show that $x^7 - 5x^2 - 20 = 0$ has a root in the interval (1.6, 1.7).

(b) Use a suitable iteration formula to find an approximation to 3 decimal places for the root of $x^7 - 5x^2 - 20 = 0$ in the interval (1.6, 1.7).

Solution:

(a) Let $f(x) = x^7 - 5x^2 - 20$ $f(1.6) = (1.6)^7 - 5(1.6)^2 - 20 = -5.96$ $f(1.7) = (1.7)^7 - 5(1.7)^2 - 20 = 6.58$ f(1.6) < 0 and f(1.7) > 0 so there is a change of sign. \Rightarrow There is a root between x = 1.6 and x = 1.7.

(b) $x^7 - 5x^2 - 20 = 0$ $x^7 - 20 = 5x^2$ Add $5x^2$ to each side $x^7 = 5x^2 + 20$ Add 20 to each side $x = \sqrt[7]{5x^2 + 20}$ Add 20 to each side So let $x_{n+1} = \sqrt[7]{5x_{\& thinsp;n}^2 + 20}$ and $x_0 = 1.6$, then $x_1 = \sqrt[7]{5(1.6)^2 + 20} = 1.6464...$ Similarly, $x_2 = 1.6518...$ $x_3 = 1.6524...$ $x_4 = 1.6525...$ So the root is 1.653 (3 d.p.)

Exercise C, Question 1

Question:

(a) Rearrange the cubic equation $x^3 - 6x - 2 = 0$ into the form $x = \pm \sqrt{a + \frac{b}{x}}$. State the values of the constants *a* and *b*.

(b) Use the iterative formula $x_{n+1} = \sqrt{a + \frac{b}{x_n}}$ with $x_0 = 2$ and your values of *a* and *b* to find the approximate positive solution x_4 of the equation, to an appropriate degree of accuracy. Show all your intermediate answers.

[E]

Solution:

(a)
$$x^3 - 6x - 2 = 0$$

 $x^3 - 2 = 6x$ Add 6x to each side
 $x^3 = 6x + 2$ Add 2 to each side
 $\frac{x^3}{x} = \frac{6x}{x} + \frac{2}{x}$ Divide each term by x
 $x^2 = 6 + \frac{2}{x}$ Simplify
 $x = \sqrt{6 + \frac{2}{x}}$ Take the square root of each side
So $a = 6$ and $b = 2$
(b) $x_0 = 2$
 $x_1 = \sqrt{6 + \frac{2}{2}} = \sqrt{7} = 2.64575...$
 $x_2 = \sqrt{6 + \frac{2}{2.64575...}} = 2.59921...$
 $x_3 = \sqrt{6 + \frac{2}{2.59921...}} = 2.60181...$
 $x_4 = \sqrt{6 + \frac{2}{2.60181...}} = 2.60167...$
So $x_4 = 2.602$ (3 d.p.)

Exercise C, Question 2

Question:

(a) By sketching the curves with equations $y = 4 - x^2$ and $y = e^x$, show that the equation $x^2 + e^x - 4 = 0$ has one negative root and one positive root.

(b) Use the iteration formula $x_{n+1} = -(4 - e^{x_n})^{\frac{1}{2}}$ with $x_0 = -2$ to find in turn x_1, x_2, x_3 and x_4 and hence write down an approximation to the negative root of the equation, giving your answer to 4 decimal places. An attempt to evaluate the positive root of the equation is made using the iteration formula

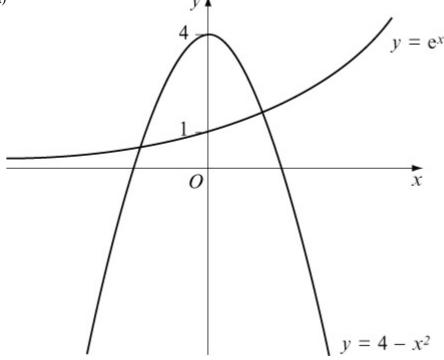
$$x_{n+1} = (4 - e^x n)^{\frac{1}{2}}$$
 with $x_0 = 1.3$

(c) Describe the result of such an attempt.

[E]

Solution:

(a)



The curves meet when x < 0 and x > 0, so the equation $e^x = 4 - x^2$ has one negative and one positive root.

Page 2 of 2

(Note that $e^x = 4 - x^2$ is the same as $x^2 + e^x - 4 = 0$). (b) $x_0 = -2$ $x_1 = -(4 - e^{-2})^{\frac{1}{2}} = -1.965875051$ $x_2 = -(4 - e^{-1.965875051})^{\frac{1}{2}} = -1.964679797$ $x_3 = -(4 - e^{-1.964679797})^{\frac{1}{2}} = -1.964637175$ $x_4 = -(4 - e^{-1.964637175})^{\frac{1}{2}} = -1.964635654$ So $x_4 = -1.9646$ (4 d.p.) (c) $x_0 = 1.3$ $x_1 = (4 - e^{1.3})^{\frac{1}{2}} = 0.575...$ $x_2 = (4 - e^{0.575...})^{\frac{1}{2}} = 1.490...$ $x_3 = (4 - e^{1.490...})^{\frac{1}{2}}$ No solution The value of $4 - e^{1.490...}$ is negative. You can not take the square root of a negative number.

Exercise C, Question 3

Question:

(a) Show that the equation $x^5 - 5x - 6 = 0$ has a root in the interval (1, 2).

(b) Stating the values of the constants p, q and r, use an iteration of the form $x_{n+1} = (px_n + q)^{\frac{1}{r}}$ an appropriate number of times to calculate this root of the equation $x^5 - 5x - 6 = 0$ correct to 3 decimal places. Show sufficient working to justify your final answer.

[E]

Solution:

(a) Let $f(x) = x^5 - 5x - 6$ $f(1) = (1)^5 - 5(1) - 6 = 1 - 5 - 6 = -10$ $f(2) = (2)^5 - 5(2) - 6 = 32 - 10 - 6 = 16$ f(1) < 0 and f(2) > 0 so there is a change of sign. \Rightarrow There is a root between x = 1 and x = 2.

(b) $x^5 - 5x - 6 = 0$ $x^5 - 6 = 5x$ Add 5x to each side $x^5 = 5x + 6$ Add 6 to each side $x = (5x + 6)^{\frac{1}{5}}$ Take the fifth root of each side So p = 5, q = 6 and r = 5Let $x_0 = 1$ then $x_1 = [5(1) + 6]^{\frac{1}{5}} = 1.6153...$ $x_2 = [5(1.6153...) + 6]^{\frac{1}{5}} = 1.6970...$ $x_3 = 1.7068...$ $x_A = 1.7079...$ $x_5 = 1.7080...$ $x_6 = 1.7081...$ $x_7 = 1.7081...$ So the root is 1.708 (3 d.p.)

Exercise C, Question 4

Question:

f (x) $\equiv 5x - 4\sin x - 2$, where x is in radians.

(a) Evaluate, to 2 significant figures, f(1.1) and f(1.15).

(b) State why the equation f(x) = 0 has a root in the interval (1.1, 1.15). An iteration formula of the form $x_{n+1} = p \sin x_n + q$ is applied to find an approximation to the root of the equation f(x) = 0 in the interval (1.1, 1.15).

(c) Stating the values of *p* and *q*, use this iteration formula with $x_0 = 1.1$ to find x_4 to 3 decimal places. Show the intermediate results in your working.

[E]

Solution:

(a) $f(1.1) = 5(1.1) - 4\sin(1.1) - 2 = -0.0648...$ $f(1.15) = 5(1.15) - 4\sin(1.15) - 2 = 0.0989...$

(b) f (1.1) < 0 and f (1.15) > 0 so there is a change of sign. \Rightarrow There is a root between x = 1.1 and x = 1.15.

```
(c) 5x - 4 \sin x - 2 = 0

5x - 2 = 4 \sin x Add 4 \sin x to each side

5x = 4 \sin x + 2 Add 2 to each side

\frac{5x}{5} = \frac{4 \sin x}{5} + \frac{2}{5} Divide each term by 5

x = 0.8 \sin x + 0.4 Simplify

So p = 0.8 and q = 0.4

x_0 = 1.1

x_1 = 0.8 \sin (1.1) + 0.4 = 1.112965888

x_2 = 0.8 \sin (1.112965888) + 0.4 = 1.117610848

x_3 = 0.8 \sin (1.117610848) + 0.4 = 1.11924557

x_4 = 0.8 \sin (1.11924557) + 0.4 = 1.119817195

So x_4 = 1.120 (3 \text{ d.p.})
```

[©] Pearson Education Ltd 2008

Exercise C, Question 5

Question:

f (x) $\equiv 2 \sec x + 2x - 3$, where x is in radians.

(a) Evaluate f(0.4) and f(0.5) and deduce the equation f(x) = 0 has a solution in the interval 0.4 < x < 0.5.

(b) Show that the equation f (x) = 0 can be arranged in the form $x = p + \frac{q}{\cos x}$, where *p* and *q* are constants, and state the value of *p* and the value of *q*.

(c) Using the iteration formula $x_{n+1} = p + \frac{q}{\cos x_n}$, $x_0 = 0.4$, with the values of p and q found in part (b), calculate x_1, x_2, x_3 and x_4 , giving your final answer to 4 decimal places.

[E]

Solution:

(a) $f(0.4) = 2 \sec (0.4) + 2 (0.4) - 3 = -0.0286$ $f(0.5) = 2 \sec (0.5) + 2 (0.5) - 3 = 0.279$ f(0.4) < 0 and f(0.5) > 0 so there is a change of sign. \Rightarrow There is a root between x = 0.4 and x = 0.5.

(b) $2 \sec x + 2x - 3 = 0$ $2 \sec x + 2x = 3$ Add 3 to each side $2x = 3 - 2 \sec x$ Subtract 2 sec x from each side $\frac{2x}{2} = \frac{3}{2} - \frac{2 \sec x}{2}$ Divide each term by 2 $x = 1.5 - \sec x$ Simplify $x = 1.5 - \frac{1}{\cos x}$ Use $\sec x = \frac{1}{\cos x}$ So p = 1.5 and q = -1(c) $x_0 = 0.4$ $x_1 = 1.5 - \frac{1}{\cos (0.4)} = 0.4142955716$

$$x_{2} = 1.5 - \frac{1}{\cos(0.4142955716)} = 0.4075815187$$

$$x_{3} = 1.5 - \frac{1}{\cos(0.4075815187)} = 0.4107728765$$

$$x_{4} = 1.5 - \frac{1}{\cos(0.4107728765)} = 0.4092644032$$
So $x_{4} = 0.4093$ (4 d.p.)

Exercise C, Question 6

Question:

f(x) = $e^{0.8x} - \frac{1}{3-2x}, x \neq \frac{3}{2}$

(a) Show that the equation f (x) = 0 can be written as $x = 1.5 - 0.5e^{-0.8x}$.

(b) Use the iteration formula $x_{n+1} = 1.5 - 0.5e^{-0.8x_n}$ with $x_0 = 1.3$ to obtain x_1, x_2 and x_3 . Give the value of x_3 , an approximation to a root of f (x) = 0, to 3 decimal places.

(c) Show that the equation f (x) = 0 can be written in the form $x = p \ln (3 - 2x)$, stating the value of p.

(d) Use the iteration formula $x_{n+1} = p \ln (3 - 2x_n)$ with $x_0 = -2.6$ and the value of p found in part (c) to obtain x_1, x_2 and x_3 . Give the value of x_3 , an approximation to the second root of f (x) = 0, to 3 decimal places.

[E]

Solution:

(a)
$$e^{0.8x} - \frac{1}{3-2x} = 0$$

 $e^{0.8x} = \frac{1}{3-2x}$ Add $\frac{1}{3-2x}$ to each side
 $\begin{pmatrix} 3-2x \end{pmatrix} e^{0.8x} = \frac{1}{3-2x} \times \begin{pmatrix} 3-2x \end{pmatrix}$ Multiply each side by
 $(3-2x)$
 $(3-2x) e^{0.8x} = 1$ Simplify
 $\frac{(3-2x) e^{0.8x}}{e^{0.8x}} = \frac{1}{e^{0.8x}}$ Divide each side by $e^{0.8x}$
 $3-2x = e^{-0.8x}$ Simplify (remember $\frac{1}{e^a} = e^{-a}$)
 $3 = e^{-0.8x} + 2x$ Add 2x to each side
 $2x = 3 - e^{-0.8x}$ Subtract $e^{-0.8x}$ from each side

 $\frac{2x}{2} = \frac{3}{2} - \frac{e^{-0.8x}}{2}$ Divide each term by 2 $x = 1.5 - 0.5e^{-0.8x}$ Simplify (b) $x_0 = 1.3$ $x_1 = 1.5 - 0.5e^{-0.8(1.3)} = 1.323272659$ $x_2 = 1.5 - 0.5e^{-0.8(1.323272659)} = 1.32653255$ $x_3 = 1.5 - 0.5e^{-0.8(1.32653255)} = 1.326984349$ So $x_3 = 1.327$ (3 d.p.)

(c)
$$e^{0.8x} - \frac{1}{3-2x} = 0$$

 $e^{0.8x} = \frac{1}{3-2x}$ Add $\frac{1}{3-2x}$ to each side
 $0.8x = \ln \left(\frac{1}{3-2x}\right)$ Taking logs
 $0.8x = -\ln (3-2x)$ Simplify using $\ln \left(\frac{1}{c}\right) = -\ln c$
 $\frac{0.8x}{0.8} = -\frac{\ln (3-2x)}{0.8}$ Divide each side by 0.8
 $x = -1.25 \ln (3-2x)$ Simplify $\left(\frac{1}{0.8} = 1.25\right)$
So $p = -1.25$
(d) $x_0 = -2.6$
 $x_1 = -1.25 \ln [3-2(-2.6)] = -2.630167693$
 $x_2 = -1.25 \ln [3-2(-2.630167693)] = -2.639331488$
 $x_3 = -1.25 \ln [3-2(-2.639331488)] = -2.642101849$
So $x_3 = -2.642 (3 d.p.)$

Exercise C, Question 7

Question:

(a) Use the iteration $x_{n+1} = (3x_n + 3)^{\frac{1}{3}}$ with $x_0 = 2$ to find, to 3 significant figures, x_4 .

The only real root of the equation $x^3 - 3x - 3 = 0$ is α . It is given that, to 3 significant figures, $\alpha = x_4$.

(b) Use the substitution $y = 3^x$ to express $27^x - 3^{x+1} - 3 = 0$ as a cubic equation.

(c) Hence, or otherwise, find an approximate solution to the equation $27^x - 3^{x+1} - 3 = 0$, giving your answer to 2 significant figures.

[E]

Solution:

(a) $x_0 = 2$ $x_1 = [3(2) + 3]^{\frac{1}{3}} = 2.080083823$ $x_2 = [3(2.080083823) + 3]^{\frac{1}{3}} = 2.098430533$ $x_3 = [3(2.098430533) + 3]^{\frac{1}{3}} = 2.102588765$ $x_4 = [3(2.102588765) + 3]^{\frac{1}{3}} = 2.103528934$ So $x_4 = 2.10(3 \text{ s.f.})$ (b) $27^x - 3^{x+1} - 3 = 0$ $(3^3)^x - 3(3^x) - 3 = 0$ $(3^x)^3 - 3(3^x) - 3 = 0$ Let $y = 3^x$ then $y^3 - 3y - 3 = 0$

(c) The root of the equation $y^3 - 3y - 3 = 0$ is x_4

so y = 2.10 (3 s.f.)but $y = 3^x$ so $3^x = 2.10$ ln $3^x = \ln 2.10$ Take logs of each side $x \ln 3 = \ln 2.10$ Simplify using $\ln a^b = b \ln a$ $\frac{x \ln 3}{\ln 3} = \frac{\ln 2.10}{\ln 3}$ Divide each side by ln 3

 $x = \frac{\ln 2.10}{\ln 3}$ Simplify x = 0.6753...So x = 0.68 (2 s.f.)

Exercise C, Question 8

Question:

The equation $x^x = 2$ has a solution near x = 1.5.

(a) Use the iteration formula $x_{n+1} = 2 \frac{1}{x_n}$ with $x_0 = 1.5$ to find the approximate solution x_5 of the equation. Show the intermediate iterations and give your final answer to 4 decimal places.

(b) Use the iteration formula $x_{n+1} = 2x_n^{(1-x_n)}$ with $x_0 = 1.5$ to find x_1, x_2, x_3, x_4 . Comment briefly on this sequence.

[E]

Solution:

(a)
$$x_0 = 1.5$$

 $x_1 = 2 \frac{1}{1.5} = 1.587401052$
 $x_2 = 2 \frac{1}{1.587401052} = 1.54752265$
 $x_3 = 2 \frac{1}{1.54752265} = 1.565034105$
 $x_4 = 2 \frac{1}{1.565034105} = 1.557210213$
 $x_5 = 2 \frac{1}{1.557210213} = 1.560679241$
So $x_5 = 1.5607$ (4 d.p.)
(b) $x_0 = 1.5$
 $x_1 = 2 \times (1.5)^{1-(1.5)} = 1.632993162$
 $x_2 = 2 \times (1.632993162)^{1-(1.632993162)} = 1.466264596$
 $x_3 = 2 \times (1.466264596)^{1-(1.466264596)} = 1.673135301$
 $x_4 = 2 \times (1.673135301)^{1-(1.673135301)} = 1.414371012$
The sequence x_0 , x_1 , x_2 , x_3 , x_4 gets further from the root. It is a divergent sequence.

Exercise C, Question 9

Question:

(a) Show that the equation $2^{1-x} = 4x + 1$ can be arranged in the form $x = \frac{1}{2} \begin{pmatrix} 2^{-x} \end{pmatrix}$

+ q, stating the value of the constant q.

(b) Using the iteration formula $x_{n+1} = \frac{1}{2} \left(2^{-x_n} \right) + q$ with $x_0 = 0.2$ and the value of q found in part (a), find x_1 , x_2 , x_3 and x_4 . Give the value of x_4 , to 4 decimal places.

[E]

Solution:

(a) $2^{1-x} = 4x + 1$ $4x = 2^{1-x} - 1$ Subtract 1 from each side $4x = 2(2^{-x}) - 1$ Use $2^{a+b} = 2^a \times 2^b$ and $2^1 = 2$ $\frac{4x}{4} = \frac{2}{4} (2^{-x}) - \frac{1}{4}$ Divide each term by 4 $x = \frac{1}{2} (2^{-x}) - \frac{1}{4}$ Simplify So $q = -\frac{1}{4}$ (b) $x_0 = 0.2$ $x_1 = \frac{1}{2} (2^{-0.2}) - \frac{1}{4} = 0.1852752816$ $x_2 = \frac{1}{2} (2^{-0.1852752816}) - \frac{1}{4} = 0.1897406227$ $x_3 = \frac{1}{2} (2^{-0.1897406227}) - \frac{1}{4} = 0.1883816687$ $x_4 = \frac{1}{2} (2^{-0.1883816687}) - \frac{1}{4} = 0.1887947991$ So $x_4 = 0.1888$ (4 d.p.)

Exercise C, Question 10

Question:

The curve with equation $y = \ln (3x)$ crosses the *x*-axis at the point P (p, 0).

(a) Sketch the graph of $y = \ln (3x)$, showing the exact value of p. The normal to the curve at the point Q, with *x*-coordinate q, passes through the origin.

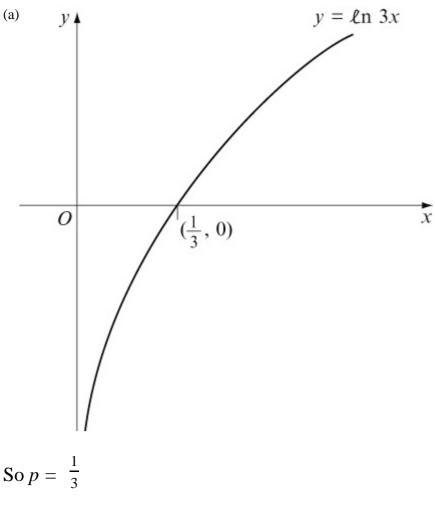
(b) Show that x = q is a solution of the equation $x^2 + \ln 3x = 0$.

(c) Show that the equation in part (b) can be rearranged in the form $x = \frac{1}{3}e^{-x^2}$.

(d) Use the iteration formula $x_{n+1} = \frac{1}{3}e^{-x}$  n², with $x_0 = \frac{1}{3}$, to find x_1 , x_2 , x_3 and x_4 . Hence write down, to 3 decimal places, an approximation for q.

[E]

Solution:



(b)
$$\bigcirc \frac{\mathrm{d}}{\mathrm{d}x} \ln 3x = \frac{1}{x}$$

So the gradient of the tangent at Q is $\frac{1}{q}$.

The gradient of the normal is -q (because the product of the gradients of perpendicular lines is -1).

The equation of the line with gradient -q that passes through (0, 0) is $y - y_1 = m(x - x_1)$ y - 0 = -q(x - 0) y = -qx @ The line y = -qx meets the curve $y = \ln 3x$ when $\ln 3x = -qx$ We know they meet at Q. So, substitute x = q into $\ln 3x = -qx$: $\ln 3q = -q(q)$ $\ln 3q = -q^2$ $q^2 + \ln 3q = 0$ Add q^2 to each side This is $x^2 + \ln 3x = 0$ with x = qSo x = q is a solution of the equation $x^2 + \ln 3x = 0$

(c)
$$x^{2} + \ln 3x = 0$$

 $\ln 3x = -x^{2}$ Subtract x^{2} from each side
 $3x = e^{-x^{2}}$ Use $\ln a = b \Rightarrow a = e^{b}$
 $x = \frac{1}{3}e^{-x^{2}}$ Divide each term by 3

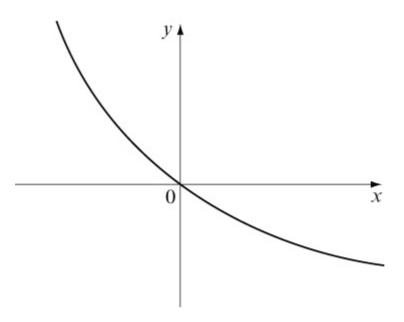
(d)
$$x_0 = \frac{1}{3}$$

 $x_1 = \frac{1}{3}e^{-} \left(\frac{1}{3}\right)^2 = 0.2982797723$
 $x_2 = \frac{1}{3}e^{-} (0.2982797723)^2 = 0.3049574223$
 $x_3 = \frac{1}{3}e^{-} (0.3049574223)^2 = 0.3037314616$
 $x_4 = \frac{1}{3}e^{-} (0.3037314616)^2 = 0.3039581993$
So $x_4 = 0.304$ (3 d.p.)

Exercise C, Question 11

Question:

(a) Copy this sketch of the curve with equation $y = e^{-x} - 1$. On the same axes sketch the graph of $y = \frac{1}{2} \begin{pmatrix} x - 1 \end{pmatrix}$, for $x \ge 1$, and $y = -\frac{1}{2} \begin{pmatrix} x - 1 \end{pmatrix}$, for x < 1. Show the coordinates of the points where the graph meets the axes.



The *x*-coordinate of the point of intersection of the graphs is α .

(b) Show that $x = \alpha$ is a root of the equation $x + 2e^{-x} - 3 = 0$.

(c) Show that $-1 < \alpha < 0$.

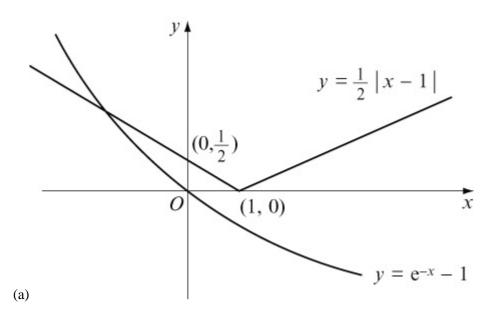
The iterative formula $x_{n+1} = -\ln \left[\frac{1}{2} \left(3 - x_n \right) \right]$ is used to solve the equation $x + 2e^{-x} - 3 = 0$.

(d) Starting with $x_0 = -1$, find the values of x_1 and x_2 .

(e) Show that, to 2 decimal places,
$$\alpha = -0.58$$
.

[E]

Solution:



① Substitute x = 0 into $y = \frac{1}{2} \begin{vmatrix} x - 1 \end{vmatrix}$:

 $y = \frac{1}{2} \begin{vmatrix} -1 \end{vmatrix} = \frac{1}{2}$ So $y = \frac{1}{2} \begin{vmatrix} x - 1 \end{vmatrix}$ meets the y-axis at $\begin{pmatrix} 0, \frac{1}{2} \end{pmatrix}$

② Substitute y = 0 into $y = \frac{1}{2} | x - 1 |$: $\frac{1}{2} | x - 1 | = 0$ x = 1So $y = \frac{1}{2} | x - 1 |$ meets the x-axis at (1, 0)

(b) The equation of the branch of the curve for x < 1 is $y = \frac{1}{2} \begin{pmatrix} 1 - x \end{pmatrix}$.

This line meets the curve $y = e^{-x} - 1$ when $\frac{1}{2} \begin{pmatrix} 1 - x \end{pmatrix} = e^{-x} - 1$ $(1 - x) = 2 (e^{-x} - 1)$ Multiply each side by 2 $1 - x = 2e^{-x} - 2$ Simplify $-x = 2e^{-x} - 3$ Subtract 1 from each side $0 = x + 2e^{-x} - 3$ Add x to each side or $x + 2e^{-x} - 3 = 0$ The line meets the curve when x = a, so x = a is a root of the equation $x + 2e^{-x} - 3 = 0$

(c) Let f (x) = $x + 2e^{-x} - 3$ $f(-1) = (-1) + 2e^{-(-1)} - 3 = 1.44$ $f(0) = (0) + 2e^{-(0)} - 3 = -1$ f (-1) > 0 and f (0) < 0 so there is a change of sign. There is a root between x = -1 and x = 0, \Rightarrow i.e. $-1 < \alpha < 0$ (d) $x_0 = -1$ $x_1 = -\ln \left\{ \frac{1}{2} \left[3 - \left(-1 \right) \right] \right\} = -0.6931471806$ $x_2 = -\ln \left\{ \frac{1}{2} \left[3 - \left(-0.6931471806 \right) \right] \right\} = -0.6133318084$ (e) $x_3 = -\ln \left\{ \frac{1}{2} \left[3 - \left(-0.6133318084 \right) \right] \right\} = -0.5914831048$ $x_4 = -\ln \left\{ \frac{1}{2} \left[3 - \left(-0.5914831048 \right) \right] \right\} = -0.5854180577$ $x_5 = -\ln \left\{ \frac{1}{2} \left[3 - \left(-0.5854180577 \right) \right] \right\} = -0.5837278997$ $x_6 = -\ln \left\{ \frac{1}{2} \left[3 - \left(-0.5837278997 \right) \right] \right\} = -0.5832563908$ So $\alpha = -0.58$ (2 d.p.)