Exercise A, Question 1

Question:

Draw mapping diagrams and graphs for the following operations:

- (a) 'subtract 5' on the set $\{ 10, 5, 0, -5, x \}$
- (b) 'double and add 3' on the set $\{ -2, 2, 4, 6, x \}$
- (c) 'square and then subtract 1' on the set $\{-3, -1, 0, 1, 3, x\}$
- (d) 'the positive square root' on the set $\{-4, 0, 1, 4, 9, x\}$.

Solution:

Note: You cannot take the square root of a negative number.

Exercise A, Question 2

Question:

Find the missing numbers a to h in the following mapping diagrams:

Solution:

$$x \to 2x \quad \text{is 'doubling'} -3 \to a \quad \text{so } a = -6 b \to 9 \quad \text{so } b \times 2 = 9 \quad \Rightarrow \quad b = 4\frac{1}{2}$$

$$x \rightarrow x^2 - 9$$
 is 'squaring then subtracting 9'
 $3 \rightarrow c$ so $c = 3^2 - 9 = 0$
 $d \rightarrow 0$ so $d^2 - 9 = 0 \Rightarrow d^2 = 9 \Rightarrow d = \pm 3$

$$x \rightarrow \frac{x-3}{4}$$
 is 'subtract 3, then divide by 4'

$$10 \rightarrow e$$
 so $e = (10 - 3) \div 4 = 1.75$

$$f \rightarrow 5$$
 so $\frac{f-3}{4} = 5$ \Rightarrow $f = 23$

 $x \to +\sqrt{x-3} \quad \text{is 'subtract } 3, \text{ then take the positive square root'}$ $27 \to g \quad \text{so } g = +\sqrt{27-3} = +\sqrt{24} = +2\sqrt{6}$ $h \to +\sqrt{3} \quad \text{so } \sqrt{h-3} = \sqrt{3} \quad \Rightarrow \quad h-3=3 \quad \Rightarrow \quad h=6$

So
$$a = -6$$
, $b = 4\frac{1}{2}$, $c = 0$, $d = \pm 3$, $e = 1.75$, $f = 23$, $g = 2\sqrt{6}$, $h = 6$

Exercise B, Question 1

Question:

Find:

(a) f(3) where f(x) = 5x + 1

(b) g (-2) where g (x) = $3x^2 - 2$

(c) h(0) where h : $x \rightarrow 3^x$

(d) j (-2) where j : $x \to 2^{-x}$

Solution:

(a) f (x) = 5x + 1Substitute $x = 3 \implies f(3) = 5 \times 3 + 1 = 16$

(b) g (x) = $3x^2 - 2$ Substitute $x = -2 \implies g(-2) = 3 \times (-2)^2 - 2 = 3 \times 4 - 2 = 10$

(c) h (x) = 3^x Substitute $x = 0 \implies h(0) = 3^0 = 1$

(d) $j(x) = 2^{-x}$ Substitute $x = -2 \implies j(-2) = 2^{-(-2)} = 2^2 = 4$

Exercise B, Question 2

Question:

Calculate the value(s) of *a*, *b*, *c* and *d* given that:

(a) p(a) = 16 where p(x) = 3x - 2(b) q(b) = 17 where $q(x) = x^2 - 3$ (c) r(c) = 34 where $r(x) = 2(2^x) + 2$ (d) s(d) = 0 where $s(x) = x^2 + x - 6$ Solution:

```
(a) p (x) = 3x - 2
Substitute x = a and p ( a ) = 16 then
16 = 3a - 2
18 = 3a
a = 6
(b) q (x) = x^2 - 3
Substitute x = b and q(b) = 17 then
17 = b^2 - 3
20 = b^2
b = \pm \sqrt{20}
b = \pm 2 \sqrt{5}
(c) r (x) = 2 \times 2^{x} + 2
Substitute x = c and r ( c ) = 34 then
34 = 2 \times 2^{c} + 2
32 = 2 \times 2^{c}
16 = 2^{c}
c = 4
(d) s (x) = x^2 + x - 6
Substitute x = d and s ( d ) = 0 then
0 = d^2 + d - 6
0 = (d+3) (d-2)
d = 2, -3
```

Exercise B, Question 3

Question:

For the following functions (i) sketch the graph of the function (ii) state the range (iii) describe if the function is one-to-one or many-to-one.

(a) m (
$$x$$
) = 3 x + 2

- (b) n (x) = $x^2 + 5$
- (c) p(x) = sin(x)

(d) q (x) =
$$x^3$$

Solution:

(a) m (x) = 3x + 2 (i)

(ii) Range of m (x) is $-\infty < m(x) < \infty$ or m (x) $\in \mathbb{R}$ (all of the real numbers) (iii) Function is one-to-one

(b) n (x) =
$$x^2 + 5$$

(i)

(ii) Range of n (x) is n (x) ≥ 5 (iii) Function is many-to-one

(c) p(x) = sin(x)(i)

(ii) Range of p (x) is $-1 \le p(x) \le 1$ (iii) Function is many-to-one

(d) q (x) = x^3 (i)

(ii) Range of q (x) is $-\infty < q(x) < \infty$ or q (x) $\in \mathbb{R}$ (iii) Function is one-to-one

Exercise B, Question 4

Question:

State whether or not the following graphs represent functions. Give reasons for your answers and describe the type of function.

Solution:

One-to-one function

One-to-one function

Not a function.

The values left of x = a do not get mapped anywhere. The values right of x = a get mapped to two values of y.

Not a function. Similar to part (c).

Values of x between -r and +r get mapped to two values of y. Values outside this don't get mapped anywhere.

Not a function. The value x = b doesn't get mapped anywhere.

Many-to-one function. Two values of *x* get mapped to the same value of *y*.

Exercise C, Question 1

Question:

The functions below are defined for the discrete domains.

(i) Represent each function on a mapping diagram, writing down the elements in the range.

(ii) State if the function is one-to-one or many-to-one.

(a) f (x) = 2x + 1 for the domain { x = 1, 2, 3, 4, 5 { .

(b) g (x) = $+\sqrt{x}$ for the domain { x = 1, 4, 9, 16, 25, 36 { .

(c) h (x) = x^2 for the domain { x = -2, -1, 0, 1, 2 { .

(d) j (x) = $\frac{2}{x}$ for the domain { x = 1, 2, 3, 4, 5 { .

Solution:

(a) f (x) = 2x + 1 'Double and add 1'

(ii) One-to-one function

(b) g (x) = $+\sqrt{x}$ 'The positive square root'

(ii) One-to-one function

(c) h (x) = x^2 'Square the numbers in the domain'

(ii) Many-to-one function

(d) j (x) = $\frac{2}{x}$ '2 divided by numbers in the domain'

(ii) One-to-one function

Exercise C, Question 2

Question:

The functions below are defined for continuous domains.

(i) Represent each function on a graph.

(ii) State the range of the function.

(iii) State if the function is one-to-one or many-to-one.

(a) m (x) = 3x + 2 for the domain { x > 0 { .

(b) n (x) = $x^2 + 5$ for the domain { $x \ge 2$ { .

(c) p (x) = $2\sin x$ for the domain { $0 \le x \le 180$ { .

(d) q (x) = $+\sqrt{x+2}$ for the domain { $x \ge -2$ { .

Solution:

(a) m (x) = 3x + 2 for x > 0

3x + 2 is a linear function of gradient 3 passing through 2 on the y axis. (ii) x = 0 does not exist in the domain So range is m $(x) > 3 \times 0 + 2 \implies m(x) > 2$

(iii) m(x) is a one-to-one function

(b) n (x) =
$$x^2 + 5$$
 for $x \ge 2$

 $x^{2} + 5$ is a parabola with minimum point at (0, 5). The domain however is only values bigger than or equal to 2. (ii) x = 2 exists in the domain So range is $n(x) \ge 2^{2} + 5 \Rightarrow n(x) \ge 9$

(iii) n (x) is a one-to-one function

(c) p (x) =
$$2\sin x$$
 for $0 \le x \le 180$

 $2 \sin x$ has the same shape as $\sin x$ except that it has been stretched by a factor of 2 parallel to the y axis.

(ii) Range of p(x) is $0 \le p(x) \le 2$ (iii) The function is many-to-one

(d)
$$q(x) = +\sqrt{x+2}$$
 for $x \ge -2$
(i) y $q(x)$ $q(x)$

 $\sqrt{x+2}$ is the \sqrt{x} graph translated 2 units to the left. (ii) The range of q(x) is $q(x) \ge 0$ (iii) The function is one-to-one

Exercise C, Question 3

Question:

The mappings f(x) and g(x) are defined by

$$f(x) = \begin{cases} 4-x & x < 4 \\ x^2 + 9x \ge 4 \end{cases}$$
$$g(x) = \begin{cases} 4-x & x < 4 \\ x^2 + 9x > 4 \end{cases}$$

Explain why f(x) is a function and g(x) is not. Sketch the function f(x) and find

(a) f(3)

(b) f(10)

(c) the value(s) of a such that f (a) = 90.

Solution:

4 - x is a linear function of gradient -1 passing through 4 on the y axis. $x^2 + 9$ is a \cup -shaped quadratic

At x = 4 4 - x = 0 and $x^2 + 9 = 25$

g(x) is not a function because the element 4 of the domain does not get mapped anywhere.

In f(x) it gets mapped to 25.

(a) f (3) = 4 - 3 = 1 (Use 4 - x as 3 < 4)

(b) f (10) =
$$10^2 + 9 = 109$$
 (Use $x^2 + 9$ as $10 > 4$)

(c)

The negative value of *a* is where $4 - a = 90 \Rightarrow a = -86$ The positive value of *a* is where $a^2 + 9 = 90$ $a^2 = 81$ $a = \pm 9$ a = 9The values of *a* are - 86 and 9.

Exercise C, Question 4

Question:

The function s(x) is defined by

s (x) =
$$\begin{cases} x^2 - 6 \ x < 0 \\ 10 - x \ x \ge 0 \end{cases}$$

(a) Sketch s(x).

(b) Find the value(s) of *a* such that s (a) = 43.

(c) Find the values of the domain that get mapped to themselves in the range.

Solution:

(a) $x^2 - 6$ is a \cup -shaped quadratic with a minimum value of (0, -6). 10 - x is a linear function with gradient - 1 passing through 10 on the y axis.

(b) There is only one value of a such that s (a) = 43 (see graph).

Values that get mapped to themselves are -2 and 5.

Exercise C, Question 5

Question:

The function g(x) is defined by g(x) = cx + d where *c* and *d* are constants to be found. Given g(3) = 10 and g(8) = 12 find the values of *c* and *d*.

Solution:

g(x) = cx + d $g(3) = 10 \Rightarrow c \times 3 + d = 10$ $g(8) = 12 \Rightarrow c \times 8 + d = 12$ $3c + d = 10 \quad \bigcirc$ $8c + d = 12 \quad \bigcirc$ $\bigcirc - \bigcirc: 5c = 2 \quad (\div 5)$ $\Rightarrow c = 0.4$ Substitute c = 0.4 into $\bigcirc:$ $3 \times 0.4 + d = 10$ 1.2 + d = 10 d = 8.8Hence g(x) = 0.4x + 8.8

Exercise C, Question 6

Question:

The function f(x) is defined by $f(x) = ax^3 + bx - 5$ where *a* and *b* are constants to be found. Given that f(1) = -4 and f(2) = 9, find the values of the constants *a* and *b*.

Solution:

$$f(x) = ax^{3} + bx - 5$$

$$f(1) = -4 \Rightarrow a \times 1^{3} + b \times 1 - 5 = -4$$

$$\Rightarrow a + b - 5 = -4$$

$$\Rightarrow a + b = 1 \quad \bigcirc$$

$$f(2) = 9 \Rightarrow a \times 2^{3} + b \times 2 - 5 = 9$$

$$\Rightarrow 8a + 2b - 5 = 9$$

$$\Rightarrow 8a + 2b = 14$$

$$\Rightarrow 4a + b = 7 \quad \bigcirc$$

$$(2 - \bigcirc: 3a = 6)$$

$$\Rightarrow a = 2$$

Substitute $a = 2$ in $\bigcirc:$
 $2 + b = 1$
 $b = -1$

Exercise C, Question 7

Question:

The function h(x) is defined by $h(x) = x^2 - 6x + 20$ { $x \ge a$ { . Given that h(x) is a one-to-one function find the smallest possible value of the constant a.

Solution:

h (x) = $x^2 - 6x + 20 = (x - 3)^2 - 9 + 20 = (x - 3)^2 + 11$ This is a \cup -shaped quadratic with minimum point at (3, 11).

This is a many-to-one function. For h(x) to be one-to-one, $x \ge 3$

Hence smallest value of *a* is 3.

Exercise D, Question 1

Question:

Given the functions f (x) = 4x + 1, g (x) = $x^2 - 4$ and h (x) = $\frac{1}{x}$, find expressions for the functions:

- (a) fg (x)
- (b) gf (x)
- (c) gh(x)
- (d) fh (x)
- (e) $f^2(x)$

Solution:

(a) fg (x) = f (x² - 4) = 4 (x² - 4) + 1 = 4x² - 15 (b) gf (x) = g (4x + 1) = (4x + 1)² - 4 = 16x² + 8x - 3 (c) gh (x) = g $\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right)^2 - 4 = \frac{1}{x^2} - 4$ (d) fh (x) = f $\left(\frac{1}{x}\right) = 4 \times \left(\frac{1}{x}\right) + 1 = \frac{4}{x} + 1$ (e) f² (x) = ff (x) = f (4x + 1) = 4 (4x + 1) + 1 = 16x + 5 © Pearson Education Ltd 2008

Exercise D, Question 2

Question:

For the following functions f(x) and g(x), find the composite functions fg(x) and gf(x). In each case find a suitable domain and the corresponding range when

(a)
$$f(x) = x - 1$$
, $g(x) = x^2$
(b) $f(x) = x - 3$, $g(x) = +\sqrt{x}$
(c) $f(x) = 2^x$, $g(x) = x + 3$

Solution:

(a) f(x) = x - 1, $g(x) = x^2$ $fg(x) = f(x^2) = x^2 - 1$ Domain $x \in \mathbb{R}$ Range $fg(x) \ge -1$

 $gf(x) = g(x-1) = (x-1)^{2}$ Domain $x \in \mathbb{R}$ Range $gf(x) \ge 0$

(b) f(x) = x - 3, $g(x) = +\sqrt{x}$ fg $(x) = f(+\sqrt{x}) = \sqrt{x - 3}$ Domain $x \ge 0$ (It will not be defined for negative numbers) Range fg $(x) \ge -3$

$$gf(x) = g(x-3) = \sqrt{x-3}$$

Domain $x \ge 3$
Range gf(x) ≥ 0

(c) $f(x) = 2^x$, g(x) = x + 3fg $(x) = f(x + 3) = 2^{x + 3}$ Domain $x \in \mathbb{R}$ Range fg (x) > 0

© Pearson Education Ltd 2008

Exercise D, Question 3

Question:

If f (x) = 3x - 2 and g (x) = x^2 , find the number(s) *a* such that fg (*a*) = gf (*a*).

Solution:

$$f(x) = 3x - 2, g(x) = x^{2}$$

$$fg(x) = f(x^{2}) = 3x^{2} - 2$$

$$gf(x) = g(3x - 2) = (3x - 2)^{2}$$

$$If fg(a) = gf(a)$$

$$3a^{2} - 2 = (3a - 2)^{2}$$

$$3a^{2} - 2 = 9a^{2} - 12a + 4$$

$$0 = 6a^{2} - 12a + 6$$

$$0 = a^{2} - 2a + 1$$

$$0 = (a - 1)^{2}$$

Hence $a = 1$

Exercise D, Question 4

Question:

Given that s (x) = $\frac{1}{x-2}$ and t (x) = 3x + 4 find the number *m* such that ts (*m*) = 16.

Solution:

$$s(x) = \frac{1}{x-2}, t(x) = 3x + 4$$

$$ts(x) = t\left(\frac{1}{x-2}\right) = 3 \times \left(\frac{1}{x-2}\right) + 4 = \frac{3}{x-2} + 4$$

If $ts(m) = 16$

$$\frac{3}{m-2} + 4 = 16 \quad (-4)$$

$$\frac{3}{m-2} = 12 \quad [\times (m-2)]$$

$$3 = 12 (m-2) \quad (\div 12)$$

$$\frac{3}{12} = m - 2$$

$$0.25 = m - 2$$

$$m = 2.25$$

Exercise D, Question 5

Question:

The functions l(x), m(x), n(x) and p(x) are defined by l(x) = 2x + 1, $m(x) = x^2 - 1$, $n(x) = \frac{1}{x+5}$ and $p(x) = x^3$. Find in terms of l, m, n and p the functions:

(a) 4x + 3(b) $4x^2 + 4x$ (c) $\frac{1}{x^2 + 4}$ (d) $\frac{2}{x + 5} + 1$ (e) $(x^2 - 1)^{-3}$ (f) $2x^2 - 1$ (g) x^{27}

Solution:

(a)
$$4x + 3 = 2(2x + 1) + 1 = 21(x) + 1 = ll(x)$$
 [or $l^2(x)$]
(b) $4x^2 + 4x = (2x + 1)^2 - 1 = [1(x)]^2 - 1 = ml(x)$
(c) $\frac{1}{x^2 + 4} = \frac{1}{(x^2 - 1) + 5} = \frac{1}{m(x) + 5} = nm(x)$
(d) $\frac{2}{x + 5} + 1 = 2 \times \frac{1}{x + 5} + 1 = 2 n(x) + 1 = ln(x)$
(e) $(x^2 - 1)^3 = [m(x)]^3 = pm(x)$

(f)
$$2x^2 - 1 = 2(x^2 - 1) + 1 = 2m(x) + 1 = lm(x)$$

$$(g) x^{27} = [(x^3)^3]^3 = \{ [p(x)]^3 \{ 3 = [pp(x)]^3 = pp(x) \}$$

= p³(x)

Exercise D, Question 6

Question:

If m (x) = 2x + 3 and n (x) = $\frac{x-3}{2}$, prove that mn (x) = x.

Solution:

m (x) = 2x + 3, n (x) = $\frac{x-3}{2}$

mn(x) = m
$$\left(\frac{x-3}{2}\right) = \not 2 \left(\frac{x-3}{\not 2}\right) + 3 = x - 3 + 3 = x$$
Exercise D, Question 7

Question:

If s (x) =
$$\frac{3}{x+1}$$
 and t (x) = $\frac{3-x}{x}$, prove that st (x) = x.

Solution:

$$s(x) = \frac{3}{x+1}, t(x) = \frac{3-x}{x}$$

$$st(x) = s\left(\frac{3-x}{x}\right)$$

$$= \frac{3}{\frac{3-x}{x}+1} \times x$$

$$= \frac{3x}{3-x+x}$$

$$= \frac{3x}{\frac{3}{3}-x+x}$$

$$= \frac{\cancel{3}x}{\cancel{3}}$$

$$= x$$

Exercise D, Question 8

Question:

If f (x) =
$$\frac{1}{x+1}$$
, prove that f² (x) = $\frac{x+1}{x+2}$. Hence find an expression for f³ (x).

Solution:

$$f(x) = \frac{1}{x+1}$$

$$ff(x) = f\left(\frac{1}{x+1}\right)$$

$$= \frac{1}{\frac{1}{x+1}+1} \times (x+1)$$

$$= \frac{x+1}{1+x+1}$$

$$= \frac{x+1}{x+2}$$

$$f^{3}(x) = f[f^{2}(x)] = f\left(\frac{x+1}{x+2}\right)$$
$$= \frac{1}{\frac{x+1}{x+2}+1} \times (x+2)$$
$$= \frac{x+2}{x+1+x+2}$$
$$= \frac{x+2}{2x+3}$$

Exercise E, Question 1

Question:

For the following functions f(x), sketch the graphs of f(x) and $f^{-1}(x)$ on the same set of axes. Determine also the equation of $f^{-1}(x)$.

(a)
$$f(x) = 2x + 3 \{ x \in \mathbb{R} \}$$

(b) $f(x) = \frac{x}{2} \{ x \in \mathbb{R} \}$
(c) $f(x) = \frac{1}{x} \{ x \in \mathbb{R}, x \neq 0 \}$
(d) $f(x) = 4 - x \{ x \in \mathbb{R}, x \neq 0 \}$
(e) $f(x) = x^2 + 2 \{ x \in \mathbb{R}, x \geq 0 \}$
(f) $f(x) = x^3 \{ x \in \mathbb{R} \}$

Solution:

(a) If y = 2x + 3y - 3 = 2x $\frac{y - 3}{2} = x$

Hence $f^{-1}(x) = \frac{x-3}{2}$

(b) If $y = \frac{x}{2}$ 2y = xHence $f^{-1}(x) = 2x$

Hence $f^{-1}(x) = \frac{1}{x}$

Note that the inverse to the function is identical to the function.

(d) If
$$y = 4 - x$$

 $x + y = 4$
 $x = 4 - y$
Hence $f^{-1}(x) = 4 - x$
Note that the inverse to the function is identical to the function

Note that the inverse to the function is identical to the function.

(e) If
$$y = x^{2} + 2$$

 $y - 2 = x^{2}$
 $\sqrt{y - 2} = x$
Hence $f^{-1}(x) = \sqrt{x - 2}$

Exercise E, Question 2

Question:

Determine which of the functions in Question 1 are self inverses. (That is to say the function and its inverse are identical.)

Solution:

Look back at Question 1. 1(c) f (x) = $\frac{1}{x}$ and 1(d) f (x) = 4 - x

are both identical to their inverses.

Exercise E, Question 3

Question:

Explain why the function g (x) = 4 - x { $x \in \mathbb{R}$, x > 0 { is not identical to its inverse.

Solution:

g (x) = 4 - xhas domain x > 0and range g (x) < 4Hence $g^{-1}(x) = 4 - x$ has domain x < 4and range $g^{-1}(x) > 0$

Although g(x) and $g^{-1}(x)$ have identical equations they act on different numbers and so are not identical. See graph.

Exercise E, Question 4

Question:

For the following functions g(x), sketch the graphs of g(x) and $g^{-1}(x)$ on the same set of axes. Determine the equation of $g^{-1}(x)$, taking care with its domain.

(a) g (x) =
$$\frac{1}{x} \left\{ x \in \mathbb{R}, x \ge 3 \right\}$$

(b) g (x) = $2x - 1 \{ x \in \mathbb{R}, x \ge 0 \}$
(c) g (x) = $\frac{3}{x - 2} \left\{ x \in \mathbb{R}, x > 2 \right\}$
(d) g (x) = $\sqrt{x - 3} \{ x \in \mathbb{R}, x \ge 7 \}$
(e) g (x) = $x^2 + 2 \{ x \in \mathbb{R}, x \ge 7 \}$
(f) g (x) = $x^3 - 8 \{ x \in \mathbb{R}, x \le 2 \}$

Solution:

$$g(x) = \frac{1}{x} \left\{ x \in \mathbb{R}, x \ge 3 \right\}$$

has range g (x) $\in \mathbb{R}$, $0 < g(x) \leq \frac{1}{3}$ Changing the subject of the formula gives

$$g^{-1}(x) = \frac{1}{x} \left\{ x \in \mathbb{R}, \quad 0 < x \leq \frac{1}{3} \right\}$$

 $g(x) = 2x - 1 \{ x \in \mathbb{R}, x \ge 0 \}$ has range $g(x) \in \mathbb{R}, g(x) \ge -1$ Changing the subject of the formula gives

$$g^{-1}(x) = \frac{x+1}{2} \left\{ x \in \mathbb{R}, x \ge -1 \right\}$$

٦

$$g(x) = \frac{3}{x-2} \left\{ x \in \mathbb{R}, x > 2 \right\}$$

has range g (x) $\in \mathbb{R}$, g (x) > 0

Changing the subject of the formula gives

$$y = \frac{3}{x-2}$$

$$y(x-2) = 3$$

$$x-2 = \frac{3}{y}$$

$$x = \frac{3}{y} + 2 \qquad \left(\text{ or } \frac{3+2y}{y} \right)$$
Hence $g^{-1}(x) = \frac{3}{x} + 2 \qquad \left(\text{ or } \frac{3+2x}{x} \right)$

$$\left\{ x \in \mathbb{R}, x > 0 \right\}$$

g (x) = $x^2 + 2$ { $x \in \mathbb{R}$, x > 4 { has range g (x) $\in \mathbb{R}$, g (x) > 18 Changing the subject of the formula gives $g^{-1}(x) = \sqrt{x-2}$ with domain $x \in \mathbb{R}$, x > 18

Exercise E, Question 5

Question:

The function m(x) is defined by m (x) = $x^2 + 4x + 9$ { $x \in \mathbb{R}$, x > a { for some constant *a*. If m⁻¹ (x) exists, state the least value of *a* and hence determine the equation of m⁻¹ (x). State its domain.

Solution:

m (x) = $x^2 + 4x + 9$ { $x \in \mathbb{R}$, x > a { . Let $y = x^2 + 4x + 9$ $y = (x + 2)^2 - 4 + 9$ $y = (x + 2)^2 + 5$ This has a minimum value of (-2, 5).

For m(x) to have an inverse it must be one-to-one. Hence the least value of *a* is -2.

m(x) would have a range of m (x) $\in \mathbb{R}$, m (x) > 5 Changing the subject of the formula gives $y = (x+2)^{2} + 5$ $y-5 = (x+2)^{2}$ $\sqrt{y-5} = x+2$ $\sqrt{y-5} - 2 = x$ Hence m⁻¹(x) = $\sqrt{x-5} - 2$ with domain $x \in \mathbb{R}, x > 5$

Exercise E, Question 6

Question:

Determine t⁻¹ (x) if the function t(x) is defined by t (x) = $x^2 - 6x + 5$ { $x \in \mathbb{R}$, $x \ge 5$ { .

Solution:

 $t(x) = x^2 - 6x + 5 \{ x \in \mathbb{R}, x \ge 5 \}$ Let $y = x^2 - 6x + 5$ (complete the square) $y = (x - 3)^2 - 9 + 5$ $y = (x - 3)^2 - 4$ This has a minimum point at (3, -4). Note. Since $x \ge 5$ is the domain, t(x) is a one-to-one function. Change the subject of the formula to find $t^{-1}(x)$: $y = (x - 3)^2 - 4$ $y + 4 = (x - 3)^2$ $\overline{\frac{y+4}{y+4}} = x - 3$ $\overline{y+4} + 3 = x$ y A t(x)y = x $t^{-1}(x)$ (0, 5)x (5, 0) $t(x) = x^2 - 6x + 5 \{ x \in \mathbb{R}, x \ge 5 \}$ has range t (x) $\in \mathbb{R}$, t (x) ≥ 0

So t⁻¹ (x) = $\sqrt{x+4} + 3$ and has domain $x \in \mathbb{R}$, $x \ge 0$

Exercise E, Question 7

Question:

The function h(x) is defined by h (x) =
$$\frac{2x+1}{x-2}$$
 $\left\{ x \in \mathbb{R}, x \neq 2 \right\}$

(a) What happens to the function as x approaches 2?

(c) Find h $^{-1}$ (x), stating clearly its domain.

(d) Find the elements of the domain that get mapped to themselves by the function.

Solution:

(a) As $x \to 2$ h (x) $\rightarrow \frac{5}{0}$ and hence h (x) $\rightarrow \infty$

(b) To find h $^{-1}$ (3) we can find what element of the domain gets mapped to 3.

So h $^{-1}$ (3) = 7

(c) Let $y = \frac{2x+1}{x-2}$ and find x as a function of y.

$$y(x-2) = 2x + 1$$

$$yx - 2y = 2x + 1$$

$$yx - 2x = 2y + 1$$

$$x(y-2) = 2y + 1$$

$$x = \frac{2y+1}{y-2}$$

So h⁻¹(x) = $\frac{2x+1}{x-2}$ { $x \in \mathbb{R}, x \neq 2$ }

Hence the inverse function has exactly the same equation as the function. **But** the elements don't get mapped to themselves, see part (b).

(d) For elements to get mapped to themselves

h (b) = b

$$\frac{2b+1}{b-2} = b$$

$$2b+1 = b (b-2)$$

$$2b+1 = b^2 - 2b$$

$$0 = b^2 - 4b - 1$$

$$b = \frac{4 \pm \sqrt{16+4}}{2} = \frac{4 \pm \sqrt{20}}{2} = \frac{4 \pm 2\sqrt{5}}{2} = 2 \pm \sqrt{5}$$

The elements $2 + \sqrt{5}$ and $2 - \sqrt{5}$ get mapped to themselves by the function.

Exercise E, Question 8

Question:

The function f (x) is defined by f (x) = $2x^2 - 3$ { $x \in \mathbb{R}$, x < 0 { . Determine

(a) $f^{-1}(x)$ clearly stating its domain

(b) the values of *a* for which $f(a) = f^{-1}(a)$.

Solution:

(a) Let
$$y = 2x^2 - 3$$

 $y + 3 = 2x^2$
 $\frac{y+3}{2} = x^2$
The domain of $f^{-1}(x)$ is the range of $f(x)$.
 $f(x) = 2x^2 - 3$ { $x \in \mathbb{R}$, $x < 0$ {
has range $f(x) > -3$
Hence $f^{-1}(x)$ must be the **negative** square root
 $f^{-1}(x) = -\sqrt{\frac{x+3}{2}}$ has domain $x \in \mathbb{R}$, $x > -3$
 $f(x) = 2x^2 - 3$ y
 $y = x$
 -3 $f^{-1}(x) = -\sqrt{\frac{x+3}{2}}$

(b) If f (a) = $f^{-1}(a)$ then a is negative (see graph). Solve f (a) = a

$$2a^{2} - 3 = a$$

$$2a^{2} - a - 3 = 0$$

$$(2a - 3) (a + 1) = 0$$

$$a = \frac{3}{2}, -1$$

Therefore a = -1

Exercise F, Question 1

Question:

Categorise the following as (i) not a function (ii) a one-to-one function (iii) a many-to-one function.

Solution:

(a) not a function

x value *a* gets mapped to two values of *y*. *x* value *b* gets mapped to no values

(b) one-to-one function

(c) many-to-one function

(d) many-to-one function

(e) not a function

x value *a* doesn't get mapped to any value of *y*.

It could be redefined as a function if the domain is said to exclude point a.

(f) not a function

x values less than *a* don't get mapped anywhere. Again we could define the domain to be $x \ge a$ and then it would be a function.

Exercise F, Question 2

Question:

The following functions f(x), g(x) and h(x) are defined by

 $f(x) = 4(x-2) \{ x \in \mathbb{R}, x \ge 0 \}$ $g(x) = x^{3} + 1 \{ x \in \mathbb{R} \}$ $h(x) = 3^{x} \{ x \in \mathbb{R} \}$

- (a) Find f(7), g(3) and h (-2) .
- (b) Find the range of f(x) and the range of g(x).

(c) Find $g^{-1}(x)$.

(d) Find the composite function fg(x).

(e) Solve gh (a) = 244.

Solution:

(a) f (7) = 4 (7 - 2) = 4 × 5 = 20
g (3) = 3³ + 1 = 27 + 1 = 28
h (-2) = 3⁻² =
$$\frac{1}{3^2} = \frac{1}{9}$$

(b) f (x) = 4 (x - 2) = 4x - 8 This is a straight line with gradient 4 and intercept - 8. The domain tells us that $x \ge 0$.

The range of f(x) is f (x) $\in \mathbb{R}$, f (x) ≥ -8 g(x) = $x^3 + 1$ $y = \int_{x}^{y} g(x)$

The range of g(x) is $g(x) \in \mathbb{R}$

(c) Let $y = x^3 + 1$ (change the subject of the formula) $y - 1 = x^3$ $\sqrt[3]{y - 1} = x$ Hence $g^{-1}(x) = \sqrt[3]{x - 1}$ { $x \in \mathbb{R}$ { (d) fg $(x) = f(x^3 + 1) = 4(x^3 + 1 - 2) = 4(x^3 - 1)$ (e) Find gh(x) first. gh $(x) = g(3^x) = (3^x)^3 + 1 = 3^{3x} + 1$ If gh (a) = 244 $3^{3a} + 1 = 244$ $3^{3a} = 3^5$ 3a = 5 $a = \frac{5}{3}$

Exercise F, Question 3

Question:

The function n(x) is defined by

n (x) =
$$\begin{cases} 5 - x \ x \leq 0 \\ x^2 \ x > 0 \end{cases}$$

- (a) Find n (-3) and n(3).
- (b) Find the value(s) of a such that n(a) = 50.

Solution:

y = 5 - x is a straight line with gradient -1 passing through 5 on the y axis. $y = x^2$ is a \cup -shaped quadratic passing through (0, 0). (a) n (-3) = 5 - (-3) = 5 + 3 = 8 n (3) = 3² = 9

(b) There are two values of a.

The negative value of *a* is where 5 - a = 50 a = 5 - 50 a = -45The positive value of *a* is where $a^2 = 50$ $a = \sqrt{50}$ $a = 5 \sqrt{2}$ The values of *a* such that n (*a*) = 50 are - 45 and + 5 $\sqrt{2}$.

Exercise F, Question 4

Question:

The function g(x) is defined as g(x) = 2x + 7 { $x \in \mathbb{R}$, $x \ge 0$ { .

(a) Sketch g(x) and find the range.

(b) Determine $g^{-1}(x)$, stating its domain.

(c) Sketch $g^{-1}(x)$ on the same axes as g(x), stating the relationship between the two graphs.

Solution:

(a) y = 2x + 7 is a straight line of gradient 2 passing through 7 on the y axis. The domain is given as $x \ge 0$.

Hence the range is g (x) ≥ 7

(b) The domain of the inverse function is $x \ge 7$. To find the equation of the inverse function use a flow chart.

$$g^{-1}(x) = \frac{x-7}{2}$$
 and has domain $x \ge 7$

Exercise F, Question 5

Question:

The functions f and g are defined by

 $f: x \to 4x - 1 \quad \{ x \in \mathbb{R} \}$ $g: x \to \frac{3}{2x - 1} \quad \left\{ x \in \mathbb{R}, \ x \neq \frac{1}{2} \right\}$

Find in its simplest form:

- (a) the inverse function f^{-1}
- (b) the composite function gf, stating its domain

(c) the values of x for which 2f (x) = g (x) , giving your answers to 3 decimal places.

[E]

Solution:

(a) $f: x \to 4x - 1$ Let y = 4x - 1 and change the subject of the formula.

$$\Rightarrow y + 1 = 4x$$
$$\Rightarrow x = \frac{y+1}{4}$$

Hence $f^{-1}: x \to \frac{x+1}{4}$

(b) gf (x) = g (4x - 1) =
$$\frac{3}{2(4x - 1) - 1} = \frac{3}{8x - 3}$$

Hence gf : $x \to \frac{3}{8x - 3}$

The domain would include all the real numbers apart from $x = \frac{3}{8}$ (i.e. where 8x - 3 = 0).

(c) If 2f (x) = g (x)
2 × (4x - 1) =
$$\frac{3}{2x - 1}$$

$$8x - 2 = \frac{3}{2x - 1}$$

$$(8x - 2) (2x - 1) = 3$$

$$16x^{2} - 12x + 2 = 3$$

$$16x^{2} - 12x - 1 = 0$$
Use $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ with $a = 16, b = -12$ and $c = -1$.
Then $x = \frac{12 \pm \sqrt{144 + 64}}{32} = \frac{12 \pm \sqrt{208}}{32} = 0.826$, -0.076
Values of x are -0.076 and 0.826

Exercise F, Question 6

Question:

The function f(x) is defined by

f(x) =
$$\begin{cases} -x & x \leq 1 \\ x - 2x > 1 \end{cases}$$

(a) Sketch the graph of f(x) for $-2 \leq x \leq 6$.

(b) Find the values of x for which f (x) = $-\frac{1}{2}$.

[E]

Solution:

For $x \le 1$, f (x) = -xThis is a straight line of gradient -1. At point x = 1, its y coordinate is -1. For x > 1, f (x) = x - 2This is a straight line of gradient +1. At point x = 1, its y coordinate is also -1. The graph is said to be **continuous**.

(b) There are two values at which f (x) = $-\frac{1}{2}$ (see graph).

Point *a* is where

$$-x = -\frac{1}{2} \implies x = \frac{1}{2}$$

Point *b* is where

$$x - 2 = -\frac{1}{2} \quad \Rightarrow \quad x = 1\frac{1}{2}$$

The values of x for which f (x) = $-\frac{1}{2} \operatorname{are} \frac{1}{2} \operatorname{and} 1 \frac{1}{2}$.

Exercise F, Question 7

Question:

The function f is defined by

$$\mathbf{f}: x \to \frac{2x+3}{x-1} \left\{ x \in \mathbb{R}, x > 1 \right\}$$

(a) Find $f^{-1}(x)$.

(b) Find (i) the range of $f^{-1}(x)$ (ii) the domain of $f^{-1}(x)$.

[E]

Solution:

(a) To find $f^{-1}(x)$ change the subject of the formula. Let $y = \frac{2x+3}{x-1}$ y(x-1) = 2x+3 yx - y = 2x + 3 yx - 2x = y + 3 x(y-2) = y + 3 $x = \frac{y+3}{y-2}$ Therefore $f^{-1}: x \rightarrow \frac{x+3}{x-2}$

(b) f(x) has domain { $x \in \mathbb{R}$, x > 1 { and range { $f(x) \in \mathbb{R}$, f(x) > 2 { { As $x \to \infty$, $y \to \frac{2x}{x} = 2$

So f⁻¹(x) has domain { $x \in \mathbb{R}$, x > 2 { and range { f⁻¹(x) $\in \mathbb{R}$, f⁻¹(x) > 1 }

© Pearson Education Ltd 2008

Solutionbank Edexcel AS and A Level Modular Mathematics

Exercise F, Question 8

Question:

The functions f and g are defined by

$$f: x \to \frac{x}{x-2} \left\{ x \in \mathbb{R}, x \neq 2 \right\}$$
$$g: x \to \frac{3}{x} \left\{ x \in \mathbb{R}, x \neq 0 \right\}$$

- (a) Find an expression for $f^{-1}(x)$.
- (b) Write down the range of $f^{-1}(x)$.
- (c) Calculate gf(1.5).

(d) Use algebra to find the values of x for which g (x) = f(x) + 4.

[E]

Solution:

(a) To find $f^{-1}(x)$ change the subject of the formula. Let $y = \frac{x}{x-2}$

$$y (x - 2) = x$$

$$yx - 2y = x$$
 (rearrange)

$$yx - x = 2y$$

$$x (y - 1) = 2y$$

$$x = \frac{2y}{y - 1}$$

It must always be rewritten as a function in *x*:

 $\mathbf{f}^{-1}\left(x\right) = \frac{2x}{x-1}$

(b) The range of $f^{-1}(x)$ is the domain of f(x). Hence range is $\{f^{-1}(x) \in \mathbb{R}, f^{-1}(x) \neq 2\}$.

(c) gf (1.5) = g
$$\left(\frac{1.5}{1.5-2}\right)$$
 = g $\left(\frac{1.5}{-0.5}\right)$ = g (-3) = $\frac{3}{-3}$ = -1
(d) If g (x) = f (x) + 4
 $\frac{3}{x} = \frac{x}{x-2} + 4$ $\left[\times x \left(x-2 \right) \right]$
3 (x-2) = x × x + 4x (x - 2)
3x - 6 = x² + 4x² - 8x
0 = 5x² - 11x + 6
0 = (5x - 6) (x - 1)
 $\Rightarrow x = \frac{6}{5}, 1$

The values of x for which g (x) = f (x) + 4 are $\frac{6}{5}$ and 1.

© Pearson Education Ltd 2008

Solutionbank Edexcel AS and A Level Modular Mathematics

Exercise F, Question 9

Question:

The functions f and g are given by

$$f: x \to \frac{x}{x^2 - 1} - \frac{1}{x + 1} \left\{ x \in \mathbb{R}, x > 1 \right\}$$
$$g: x \to \frac{2}{x} \left\{ x \in \mathbb{R}, x > 0 \right\}$$

- (a) Show that f (x) = $\frac{1}{(x-1)(x+1)}$.
- (b) Find the range of f (x).
- (c) Solve gf (x) = 70.

[E]

Solution:

(a)
$$f(x) = \frac{x}{x^2 - 1} - \frac{1}{x + 1}$$

$$= \frac{x}{(x + 1)(x - 1)} - \frac{1}{(x + 1)}$$

$$= \frac{x}{(x + 1)(x - 1)} - \frac{x - 1}{(x + 1)(x - 1)}$$

$$= \frac{x - (x - 1)}{(x + 1)(x - 1)}$$

$$= \frac{1}{(x + 1)(x - 1)}$$

(b) The range of f(x) is the set of values that y take.

By using a graphical calculator we can see that $y = f \begin{pmatrix} x \end{pmatrix}$

 $x \in \mathbb{R}, x \neq -1, x \neq 1$ } is a symmetrical graph about the y axis.

For
$$x > 1$$
, f (x) > 0

(c) gf (x) = g
$$\left[\frac{1}{(x-1)(x+1)} \right] = \frac{2}{\frac{1}{(x-1)(x+1)}} = 2 \times \frac{(x-1)(x+1)}{1} = 2 \left(x-1 \right) \left(x+1 \right)$$

If gf (x) = 70
2 (x-1) (x+1) = 70
(x-1) (x+1) = 35
 $x^2 - 1 = 35$
 $x^2 = 36$
 $x = \pm 6$

© Pearson Education Ltd 2008