
Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise A, Question 1 

Question: 

Draw mapping diagrams and graphs for the following operations: 

(a) ‘subtract 5’ on the set { 10 , 5 , 0 , − 5 ,x {   

(b) ‘double and add 3’ on the set { − 2 , 2 , 4 , 6 ,x {   

(c) ‘square and then subtract 1’ on the set { − 3 , − 1 , 0 , 1, 3 , x {   

(d) ‘ the positive square root’ on the set { − 4 , 0 , 1 , 4 , 9 , x {  . 

Solution: 

(a)  

(b)  
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(c)  

(d)

 

Note: You cannot take the square root of a negative number. 
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Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise A, Question 2 

Question: 

Find the missing numbers a to h in the following mapping diagrams: 
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Solution: 

x → 2x  is ‘doubling’ 
− 3→ a  so a = − 6 

b → 9  so b × 2 = 9  ⇒  b = 4 
 

 
x → x2 − 9  is ‘squaring then subtracting 9’ 

3→ c  so c = 32 − 9 = 0 

d → 0  so d2 − 9 = 0  ⇒  d2 = 9  ⇒  d = ± 3 

 

x →  is ‘subtract 3, then divide by 4’
 

10→ e  so e = ( 10 − 3 ) ÷ 4 = 1.75  

f → 5  so = 5  ⇒  f = 23
 

 
x → + \ x − 3  is ‘subtract 3, then take the positive square root’ 
27→ g  so g = + \ 27 − 3 = + \ 24 = + 2√ 6 
h → + √ 3  so \h − 3 = √ 3  ⇒  h − 3 = 3  ⇒  h = 6 
 

So a = − 6, b = 4 , c = 0, d = ± 3, e = 1.75, f = 23, g = 2 √ 6, h = 6
 

1

2

x − 3

4

f − 3

4

1

2
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Question: 

Find: 

(a) f(3) where f (x )  = 5x + 1 

(b) g ( − 2 )  where g (x )  = 3x2 − 2
 

(c) h(0) where h :x → 3x
 

(d) j ( − 2 )  where j : x → 2 − x
 

Solution: 

(a) f ( x )  = 5x + 1 
Substitute x = 3  ⇒  f ( 3 )  = 5 × 3 + 1 = 16 

(b) g ( x )  = 3x2 − 2
 

Substitute x = − 2  ⇒  g ( − 2 )  = 3 × ( − 2 )  2 − 2 = 3 × 4 − 2 = 10 

(c) h ( x )  = 3x
 

Substitute x = 0  ⇒  h ( 0 )  = 30 = 1 

(d) j ( x )  = 2 − x
 

Substitute x = − 2  ⇒  j ( − 2 )  = 2− ( − 2 )  = 22 = 4 
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Question: 

Calculate the value(s) of a, b, c and d given that: 

(a) p ( a )  = 16 where p (x )  = 3x − 2 

(b) q ( b )  = 17 where q (x )  = x2 − 3
 

(c) r ( c )  = 34 where r (x )  = 2 ( 2x ) + 2 
 

(d) s ( d )  = 0 where s ( x )  = x2 + x − 6
 

Solution: 

(a) p ( x )  = 3x − 2 
Substitute x = a and p (a )  = 16 then 
16 = 3a − 2 
18 = 3a 
a = 6 

(b) q ( x )  = x2 − 3
 

Substitute x = b and q (b )  = 17 then 
17 = b2 − 3 

20 = b2 
b = ± \ 20 
b = ± 2 √ 5 

(c) r ( x )  = 2 × 2x + 2
 

Substitute x = c and r (c )  = 34 then 
34 = 2 × 2c + 2 

32 = 2 × 2c 

16 = 2c 
c = 4 

(d) s ( x )  = x2 + x − 6
 

Substitute x = d and s (d )  = 0 then 
0 = d2 + d − 6 
0 = ( d + 3 ) ( d − 2 )   
d = 2, − 3 
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Question: 

For the following functions 
(i) sketch the graph of the function 
(ii) state the range 
(iii) describe if the function is one-to-one or many-to-one. 

(a) m ( x )  = 3x + 2 

(b) n ( x )  = x2 + 5
 

(c) p ( x )  = sin ( x )   

(d) q ( x )  = x3
 

Solution: 

(a) m ( x )  = 3x + 2 
(i) 

 

(ii)  Range of m (x )  is − ∞ < m ( x ) < ∞   
or m ( x ) ∈ ℝ (all of the real numbers) 
(iii) Function is one-to-one 

(b) n ( x )  = x2 + 5
 

(i) 
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(ii)  Range of n (x )  is n ( x )  ≥  5  
(iii) Function is many-to-one 

(c) p ( x )  = sin ( x )   
(i) 

 

(ii)  Range of p (x )  is − 1  ≤  p ( x )  ≤  1  
(iii) Function is many-to-one 

(d) q ( x )  = x3
 

(i) 
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(ii)  Range of q (x )  is − ∞ < q ( x ) < ∞  or q (x ) ∈ ℝ  
(iii) Function is one-to-one 
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Exercise B, Question 4 

Question: 

State whether or not the following graphs represent functions. Give reasons for 
your answers and describe the type of function. 

(a)  

(b)  

(c)  
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(d)  

(e)  

(f)  

Solution: 

(a)  

One-to-one function 
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(b)  

One-to-one function 

(c)  

Not a function. 
The values left of x = a do not get mapped anywhere. 
The values right of x = a get mapped to two values of y. 

(d)  

Not a function. Similar to part (c). 
Values of x between -r and +r get mapped to two values of y. 
Values outside this don't get mapped anywhere. 
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(e)  

Not a function. The value x = b doesn't get mapped anywhere. 

(f)  

Many-to-one function. Two values of x get mapped to the same value of y. 

Page 4 of 4Heinemann Solutionbank: Core Maths 3 C3

3/9/2013file://C:\Users\Buba\kaz\ouba\c3_2_b_4.html



Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise C, Question 1 

Question: 

The functions below are defined for the discrete domains. 
(i) Represent each function on a mapping diagram, writing down the elements in 
the range. 
(ii) State if the function is one-to-one or many-to-one. 

(a) f ( x )  = 2x + 1 for the domain {x = 1 , 2 , 3 , 4 , 5 {  . 

(b) g ( x )  = + √ x for the domain {x = 1 , 4 , 9 , 16 , 25 , 36 {  . 

(c) h ( x )  = x2 for the domain {x = − 2 , − 1 , 0 , 1 , 2 {  .
 

(d) j ( x )  =  for the domain {x = 1 , 2 , 3 , 4 , 5 {  .

 
2

x

Solution: 

(a) f ( x )  = 2x + 1  ‘Double and add 1’ 

(i)  

(ii)  One-to-one function 

(b) g ( x )  = + √ x  ‘The positive square root’  
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(i)  

(ii)  One-to-one function 

(c) h ( x )  = x2  ‘Square the numbers in the domain’
 

(i)  

(ii)  Many-to-one function 

(d) j ( x )  =  ‘2 divided by numbers in the domain’

 

(i)  

(ii)  One-to-one function 

2

x
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Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise C, Question 2 

Question: 

The functions below are defined for continuous domains. 
(i) Represent each function on a graph. 
(ii) State the range of the function. 
(iii) State if the function is one-to-one or many-to-one. 

(a) m ( x )  = 3x + 2 for the domain {x > 0 {  . 

(b) n ( x )  = x2 + 5 for the domain {x  ≥  2 {  .
 

(c) p ( x )  = 2sin x for the domain { 0  ≤  x  ≤  180 {  . 

(d) q ( x )  = + \ x + 2 for the domain { x  ≥  − 2 {  . 

Solution: 

(a) m ( x )  = 3x + 2 for x > 0 

(i)  

3x + 2 is a linear function of gradient 3 passing through 2 on the y axis. 
(ii) x = 0 does not exist in the domain 
So range is m (x ) > 3 × 0 + 2  ⇒  m ( x ) > 2  
(iii) m(x) is a one-to-one function 

(b) n ( x )  = x2 + 5 for x  ≥  2
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(i)  

x2 + 5 is a parabola with minimum point at ( 0 , 5 )  .
 

The domain however is only values bigger than or equal to 2. 
(ii) x = 2 exists in the domain 
So range is n (x )   ≥  22 + 5  ⇒  n ( x )   ≥  9 

(iii) n ( x )  is a one-to-one function 

(c) p ( x )  = 2sinx for 0  ≤  x  ≤  180 

(i)  

2sinx has the same shape as sin x except that it has been stretched by a factor of 
2 parallel to the y axis. 
(ii) Range of p(x) is 0  ≤  p ( x )  ≤  2  
(iii) The function is many-to-one 

(d) q ( x )  = + \ x + 2 for x  ≥  − 2 

(i)  
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\ x + 2 is the √ x graph translated 2 units to the left. 
(ii) The range of q(x) is q ( x )  ≥  0  
(iii) The function is one-to-one 
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Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise C, Question 3 

Question: 

The mappings f(x) and g(x) are defined by 

f ( x )  =  
 

g ( x )  =  
 

Explain why f(x) is a function and g(x) is not. 
Sketch the function f(x) and find 

(a) f(3) 

(b) f(10) 

(c) the value(s) of a such that f ( a )  = 90. 

 
 


4 − x x < 4

x2 + 9 x  ≥  4

 
 


4 − x x < 4

x2 + 9 x > 4

Solution: 

4 − x is a linear function of gradient − 1 passing through 4 on the y axis. 
x2 + 9 is a  ∪  -shaped quadratic 

At x = 4 4 − x = 0 and x2 + 9 = 25 

 

g(x) is not a function because the element 4 of the domain does not get mapped 
anywhere. 
In f(x) it gets mapped to 25. 

Page 1 of 2Heinemann Solutionbank: Core Maths 3 C3

3/9/2013file://C:\Users\Buba\kaz\ouba\c3_2_c_3.html



© Pearson Education Ltd 2008 

(a) f ( 3 )  = 4 − 3 = 1 (Use 4 − x as 3 < 4) 

(b) f ( 10 )  = 102 + 9 = 109 (Use x2 + 9 as 10 > 4)
 

(c)  

The negative value of a is where 4 −a = 90  ⇒  a = − 86 
The positive value of a is where 
a2 + 9 = 90 

a2 = 81 
a = ± 9 
a = 9 
The values of a are − 86 and 9. 
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Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise C, Question 4 

Question: 

The function s(x) is defined by 

s ( x )  =  
 

(a) Sketch s(x). 

(b) Find the value(s) of a such that s (a )  = 43. 

(c) Find the values of the domain that get mapped to themselves in the range. 

 
 


x2 − 6 x < 0

10 − x x  ≥  0

Solution: 

(a) x2 − 6 is a  ∪  -shaped quadratic with a minimum value of ( 0 , − 6 )  .
 

10 − x is a linear function with gradient − 1 passing through 10 on the y axis. 

 

(b) There is only one value of a such that s ( a )  = 43 (see graph). 
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s ( a )  = 43 
a2 − 6 = 43 

a2 = 49 
a = ± 7 
Value is negative so a = − 7 

(c) If value gets mapped to itself then s (b )  = b 
For 10 −x part 
10 − b = b 
 ⇒  10 = 2b 

 ⇒  b = 5 
Check. s ( 5 )  = 10 − 5 = 5� 
For x2 − 6 part 

b2 − 6 = b 

 ⇒  b2 − b − 6 = 0 

 ⇒  ( b − 3 ) ( b + 2 ) = 0  

 ⇒  b = 3, − 2 
b must be negative 
 ⇒  b = − 2 

Check. s ( − 2 )  = ( − 2 )  2 − 6 = 4 − 6 = − 2� 
Values that get mapped to themselves are − 2 and 5. 
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Question: 

The function g(x) is defined by g (x )  = cx + d where c and d are constants to 
be found. Given g ( 3 )  = 10 and g ( 8 )  = 12 find the values of c and d. 

Solution: 

g ( x )  = cx + d 
g ( 3 )  = 10  ⇒  c × 3 + d = 10 

g ( 8 )  = 12  ⇒  c × 8 + d = 12 
3c + d = 10 � 
8c + d = 12 � 
� − �: 5c = 2 ( ÷ 5 )   
 ⇒  c = 0.4 

Substitute c = 0.4 into �: 
3 × 0.4 +d = 10 
1.2 + d = 10 
d = 8.8 
Hence g ( x )  = 0.4x + 8.8 
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Question: 

The function f(x) is defined by f (x )  = ax3 + bx − 5 where a and b are 
constants to be found. Given that f ( 1 )  = − 4 and f ( 2 ) = 9, find the values 
of the constants a and b. 

Solution: 

f ( x )  = ax3 + bx − 5
 

f ( 1 )  = − 4  ⇒  a × 13 + b × 1 − 5 = − 4 

 ⇒  a + b − 5 = − 4 

 ⇒  a + b = 1 � 

f ( 2 )  = 9  ⇒  a × 23 + b × 2 − 5 = 9 

 ⇒  8a + 2b − 5 = 9 

 ⇒  8a + 2b = 14 

 ⇒  4a + b = 7 � 
� − �: 3a = 6 
 ⇒  a = 2 

Substitute a = 2 in �: 
2 + b = 1 
b = − 1 
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Edexcel AS and A Level Modular Mathematics 
Exercise C, Question 7 

Question: 

The function h(x) is defined by h (x )  = x2 − 6x + 20 { x  ≥  a {  . Given 
that h(x) is a one-to-one function find the smallest possible value of the constant 
a. 

Solution: 

h ( x )  = x2 − 6x + 20 = ( x − 3 )  2 − 9 + 20 = (x − 3 )  2 + 11
 

This is a  ∪  -shaped quadratic with minimum point at (3, 11). 

 

This is a many-to-one function. 
For h(x) to be one-to-one, x  ≥  3 
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Hence smallest value of a is 3. 

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

3/9/2013file://C:\Users\Buba\kaz\ouba\c3_2_c_7.html



Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise D, Question 1 

© Pearson Education Ltd 2008 

Question: 

Given the functions f (x )  = 4x + 1, g (x )  = x2 − 4 and h (x )  =  , find 

expressions for the functions: 

(a) fg ( x )   

(b) gf ( x )   

(c) gh ( x )   

(d) fh ( x )   

(e) f2 ( x )  
 

1

x

Solution: 

(a) fg ( x )  = f ( x2 − 4 )  = 4 (x2 − 4 )  + 1 = 4x2 − 15
 

(b) gf ( x )  = g ( 4x + 1 )  = ( 4x + 1 )  2 − 4 = 16x2 + 8x − 3
 

(c) gh ( x )  = g  =  2 − 4 =  − 4

 

(d) fh ( x )  = f  = 4 ×  + 1 =  + 1 

 

(e) f2 ( x )  = ff ( x )  = f ( 4x + 1 )  = 4 ( 4x + 1 )  + 1 = 16x + 5
 

 


1

x
 


 


1

x
 


1

x2

 


1

x
 


 


1

x
 


4

x

Page 1 of 1Heinemann Solutionbank: Core Maths 3 C3

3/9/2013file://C:\Users\Buba\kaz\ouba\c3_2_d_1.html



Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise D, Question 2 

Question: 

For the following functions f(x) and g(x), find the composite functions fg(x) and 
gf(x). In each case find a suitable domain and the corresponding range when 

(a) f ( x )  = x − 1, g (x )  = x2
 

(b) f ( x )  = x − 3, g (x )  = + √ x 

(c) f ( x )  = 2x, g ( x )  = x + 3
 

Solution: 

(a) f ( x )  = x − 1, g (x )  = x2
 

fg ( x )  = f ( x2 )  = x2 − 1 

Domain x ∈ ℝ 
Range fg (x )  ≥  − 1  

 

gf ( x )  = g ( x − 1 )  = ( x − 1 )  2
 

Domain x ∈ ℝ 
Range gf ( x )  ≥  0  
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(b) f ( x )  = x − 3, g (x )  = + √ x 
fg ( x )  = f ( + √ x ) = √ x − 3  
Domain x  ≥  0 
(It will not be defined for negative numbers) 
Range fg (x )  ≥  − 3  

 

gf ( x )  = g ( x − 3 ) = \ x − 3  
Domain x  ≥  3 
Range gf (x )  ≥  0  

 

(c) f ( x )  = 2x, g ( x )  = x + 3
 

fg ( x )  = f ( x + 3 )  = 2x + 3 

Domain x ∈ ℝ 
Range fg ( x ) > 0  
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gf ( x )  = g ( 2x ) = 2x + 3 
 

Domain x ∈ ℝ 
Range gf (x ) > 3  
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Question: 

If f ( x )  = 3x − 2 and g (x )  = x2, find the number(s) a such that fg (a )  
= gf ( a )  . 

Solution: 

f ( x )  = 3x − 2, g (x )  = x2
 

fg ( x )  = f ( x2 )  = 3x2 − 2 

gf ( x )  = g ( 3x − 2 )  = ( 3x − 2 )  2 
If fg ( a )  = gf ( a )   
3a2 − 2 = ( 3a − 2 )  2 

3a2 − 2 = 9a2 − 12a + 4 

0 = 6a2 − 12a + 6 

0 = a2 − 2a + 1 

0 = ( a − 1 )  2 
Hence a = 1 
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Question: 

Given that s (x )  =  and t (x )  = 3x + 4 find the number m such that ts

( m )  = 16. 

1

x − 2

Solution: 

s ( x )  =  , t ( x )  = 3x + 4

 

ts ( x )  = t  = 3 ×  + 4 =  + 4 
 

If ts ( m )  = 16 

+ 4 = 16 ( − 4 )  
 

= 12 [ × ( m − 2 ) ]  
 

3 = 12 (m − 2 ) ( ÷ 12 )   

= m − 2
 

0.25 =m − 2 
m = 2.25 

1

x − 2

 


1

x − 2
 


 


1

x − 2
 


3

x − 2

3

m − 2

3

m − 2

3

12
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Question: 

The functions l(x), m(x), n(x) and p(x) are defined by l (x )  = 2x + 1, m (x )  

= x2 − 1, n (x )  =  and p (x )  = x3. Find in terms of l, m, n and p the 

functions: 

(a) 4x + 3 

(b) 4x2 + 4x
 

(c) 

 

(d) + 1

 

(e) ( x2 − 1 )  3
 

(f) 2x2 − 1
 

(g) x27
 

1

x + 5

1

x2 + 4

2

x + 5

Solution: 

(a) 4x + 3 = 2 ( 2x + 1 ) + 1 = 2 l (x ) + 1 = ll ( x )  [or l2 ( x )  ]
 

(b) 4x2 + 4x = ( 2x + 1 )  2 − 1 = [ l ( x ) ]  2 − 1 = ml ( x )  
 

(c) =  =  = nm (x )  

 

(d) + 1 = 2 ×  + 1 = 2 n (x )  + 1 = ln ( x )  

 

(e) ( x2 − 1 )  3 = [ m ( x ) ]  3 = pm ( x )  
 

(f) 2x2 − 1 = 2 ( x2 − 1 )  + 1 = 2 m ( x )  + 1 = lm ( x )  
 

1

x2 + 4

1

( x2 − 1 ) + 5 

1

m ( x ) + 5 

2

x + 5

1

x + 5
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(g) x27 = [ ( x3 )  3 ]  3 = { [ p ( x ) ]  3 {  3 = [ pp ( x ) ]  3 = ppp (x )  
= p3 ( x )   
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Edexcel AS and A Level Modular Mathematics 
Exercise D, Question 6 
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Question: 

If m ( x )  = 2x + 3 and n (x )  =  , prove that mn (x )  = x.

 
x − 3

2

Solution: 

m ( x )  = 2x + 3, n (x )  =  

 

 

x − 3

2
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Question: 

If s ( x )  =  and t (x )  =  , prove that st (x )  = x.

 
3

x + 1

3 − x

x

Solution: 

s ( x )  =  , t ( x )  =  

 

 

3

x + 1

3 − x

x
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Question: 

If f ( x )  =  , prove that f2 ( x )  =  . Hence find an expression for f3 ( x )  .

 
1

x + 1

x + 1

x + 2

Solution: 

f ( x )  =  

 

 

 

1

x + 1
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Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise E, Question 1 

Question: 

For the following functions f(x), sketch the graphs of f(x) and f− 1 ( x )  on the 
same set of axes. Determine also the equation of f− 1 ( x )  . 

(a) f ( x )  = 2x + 3 { x ∈ ℝ {   

(b) f ( x )  =  x ∈ ℝ  

 

(c) f ( x )  =  x ∈ ℝ , x ≠ 0  

 

(d) f ( x )  = 4 − x { x ∈ ℝ {   

(e) f ( x )  = x2 + 2 { x ∈ ℝ , x  ≥  0 {  
 

(f) f ( x )  = x3 { x ∈ ℝ {  
 

x

2

 
 


 
 


1

x

 
 


 
 


Solution: 

(a) If y = 2x + 3 
y − 3 = 2x 

= x
 

Hence f− 1 ( x )  =  
 

y − 3

2

x − 3

2
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(b) If y =  

 

2y = x 
Hence f− 1 ( x )  = 2x 

 

(c) If y =  

 

yx = 1 

x =  
 

Hence f− 1 ( x )  =  
 

Note that the inverse to the function is identical to the function. 

x

2

1

x

1

y

1

x
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(d) If y = 4 − x 
x + y = 4 
x = 4 − y 
Hence f− 1 ( x )  = 4 − x 
Note that the inverse to the function is identical to the function. 

 

(e) If y = x2 + 2
 

y − 2 = x2 
\ y − 2 = x 
Hence f − 1 ( x )  = \ x − 2 
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(f) If y = x3
 

3\ y = x 

Hence f− 1 ( x )  = 3\ x 
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Exercise E, Question 2 
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Question: 

Determine which of the functions in Question 1 are self inverses. (That is to say 
the function and its inverse are identical.) 

Solution: 

Look back at Question 1. 

1(c) f ( x )  =  and
 

1(d) f ( x )  = 4 − x 
are both identical to their inverses. 

1

x
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Exercise E, Question 3 
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Question: 

Explain why the function g (x )  = 4 − x { x ∈ ℝ , x > 0 {  is not identical to 
its inverse. 

Solution: 

 

g ( x )  = 4 − x 
has domain x > 0 
and range g (x ) < 4  
Hence g− 1 ( x )  = 4 − x 
has domain x < 4 
and range g− 1 ( x )  > 0 

Although g(x) and g− 1 ( x )  have identical equations they act on different 
numbers and so are not identical. See graph. 
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Edexcel AS and A Level Modular Mathematics 
Exercise E, Question 4 

Question: 

For the following functions g(x), sketch the graphs of g(x) and g− 1 ( x )  on the 
same set of axes. Determine the equation of g− 1 ( x )  , taking care with its 
domain. 

(a) g ( x )  =  x ∈ ℝ , x  ≥  3  

 

(b) g ( x )  = 2x − 1 { x ∈ ℝ , x  ≥  0 {   

(c) g ( x )  =  x ∈ ℝ , x > 2  

 

(d) g ( x )  = \ x − 3 { x ∈ ℝ , x  ≥  7 {   

(e) g ( x )  = x2 + 2 { x ∈ ℝ , x > 4 {  
 

(f) g ( x )  = x3 − 8 { x ∈ ℝ , x  ≤  2 {  
 

1

x

 
 


 
 


3

x − 2

 
 


 
 


Solution: 

(a)  
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g ( x )  =  x ∈ ℝ , x  ≥  3  
 

has range g (x )  ∈ ℝ , 0 < g ( x )   ≤   
 

Changing the subject of the formula gives 

g − 1 ( x )  =  x ∈ ℝ , 0 < x  ≤   
 

(b)  

g ( x )  = 2x − 1 { x ∈ ℝ , x  ≥  0 {   

has range g (x ) ∈ ℝ , g ( x )  ≥  − 1  
Changing the subject of the formula gives 

g − 1 ( x )  =  x ∈ ℝ , x  ≥  − 1  
 

1

x

 
 


 
 


1

3

1

x

 
 


1

3

 
 


x + 1

2
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(c)  

g ( x )  =  x ∈ ℝ , x > 2  

 

has range g (x ) ∈ ℝ , g ( x ) > 0  
Changing the subject of the formula gives 

y =  
 

y ( x − 2 ) = 3  

x − 2 =  
 

x =  + 2  or  
 

Hence g− 1 ( x )  =  + 2  or  
 

{ x ∈ ℝ , x > 0 {   

3

x − 2

 
 


 
 


3

x − 2

3

y

3

y
 


3 + 2y

y
 


3

x
 


3 + 2x

x
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(d)  

g ( x )  = \ x − 3 { x ∈ ℝ , x  ≥  7 {   

has range g (x ) ∈ ℝ , g ( x )  ≥  2  
Changing the subject of the formula gives 
y = \ x − 3 
y2 = x − 3 

x = y2 + 3 

Hence g− 1 ( x )  = x2 + 3 with domain x ∈ ℝ , x  ≥  2 

(e)  

g ( x )  = x2 + 2 { x ∈ ℝ , x > 4 {  
 

has range g (x ) ∈ ℝ , g ( x ) > 18  
Changing the subject of the formula gives 
g − 1 ( x )  = \ x − 2  with domainx ∈ ℝ , x > 18 
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(f)  

g ( x )  = x3 − 8 { x ∈ ℝ , x  ≤  2 {  
 

has range g (x ) ∈ ℝ , g ( x )  ≤  0  
Changing the subject of the formula gives 
y = x3 − 8 

y + 8 = x3 
3\ y + 8 = x 

Hence g− 1 ( x )  = 3\ x + 8 with domain x ∈ ℝ , x  ≤  0 
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Edexcel AS and A Level Modular Mathematics 
Exercise E, Question 5 

Question: 

The function m(x) is defined by m (x )  = x2 + 4x + 9 { x ∈ ℝ , x > a {  for 

some constant a. If m − 1 ( x )  exists, state the least value of a and hence 
determine the equation of m − 1 ( x )  . State its domain. 

Solution: 

m ( x )  = x2 + 4x + 9 { x ∈ ℝ , x > a {  .
 

Let y = x2 + 4x + 9 

y = ( x + 2 )  2 − 4 + 9 

y = ( x + 2 )  2 + 5 
This has a minimum value of ( − 2 , 5 )  . 

 

For m(x) to have an inverse it must be one-to-one. 
Hence the least value of a is − 2. 
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m(x) would have a range of m (x ) ∈ ℝ , m ( x ) > 5  
Changing the subject of the formula gives 
y = ( x + 2 )  2 + 5 

y − 5 = ( x + 2 )  2 
\ y − 5 = x + 2 
\ y − 5 − 2 =x 
Hence m− 1 ( x )  = \ x − 5 − 2 with domain x ∈ ℝ, x > 5 
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Question: 

Determine t− 1 ( x )  if the function t(x) is defined by t (x )  = x2 − 6x + 5
{ x ∈ ℝ , x  ≥  5 {  . 

Solution: 

t ( x )  = x2 − 6x + 5 { x ∈ ℝ , x  ≥  5 {  
 

Let y = x2 − 6x + 5 (complete the square) 

y = ( x − 3 )  2 − 9 + 5 

y = ( x − 3 )  2 − 4 
This has a minimum point at ( 3 , − 4 )  . 
Note. Since x  ≥  5 is the domain, t(x) is a one-to-one function. 
Change the subject of the formula to find t− 1 ( x )  : 

y = ( x − 3 )  2 − 4 

y + 4 = ( x − 3 )  2 
\ y + 4 = x − 3 
\ y + 4 + 3 =x 

 

t ( x )  = x2 − 6x + 5 { x ∈ ℝ , x  ≥  5 {  
 

has range t (x ) ∈ ℝ , t ( x )  ≥  0  

So t− 1 ( x ) = \ x + 4 + 3 and has domain x ∈ ℝ , x  ≥  0 
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Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise E, Question 7 

Question: 

The function h(x) is defined by h (x )  =  x ∈ ℝ , x ≠ 2  .

 

(a) What happens to the function as x approaches 2? 

(b) Find h− 1 ( 3 )  .
 

(c) Find h − 1 ( x )  , stating clearly its domain.
 

(d) Find the elements of the domain that get mapped to themselves by the 
function. 

2x + 1

x − 2

 
 


 
 


Solution: 

(a) As x → 2 h ( x )  →  and hence h (x ) → ∞  

 

(b) To find h − 1 ( 3 )  we can find what element of the domain gets mapped to 3.
 

 

So h (a )  = 3 

= 3
 

2a + 1 = 3a − 6 
7 = a 
So h− 1 ( 3 )  = 7 

(c) Let y =  and find x as a function of y.

 

5

0

2a + 1

a − 2

2x + 1

x − 2
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y ( x − 2 ) = 2x + 1  
yx − 2y = 2x + 1 
yx − 2x = 2y + 1 
x ( y − 2 ) = 2y + 1  

x =  
 

So h− 1 ( x )  =  x ∈ ℝ , x ≠ 2  
 

Hence the inverse function has exactly the same equation as the function. But 
the elements don't get mapped to themselves, see part (b). 

(d) For elements to get mapped to themselves 
h ( b )  = b 

= b
 

2b + 1 = b ( b − 2 )   
2b + 1 = b2 − 2b 

0 = b2 − 4b − 1 

b =  =  =  = 2 ± √ 5
 

The elements 2 + √ 5 and 2 − √ 5 get mapped to themselves by the function. 

2y + 1

y − 2

2x + 1

x − 2

 
 


 
 


2b + 1

b − 2

4 ± \ 16 + 4

2

4 ± \ 20

2

4 ± 2 √ 5

2
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Edexcel AS and A Level Modular Mathematics 
Exercise E, Question 8 

Question: 

The function f (x )  is defined by f (x )  = 2x2 − 3 { x ∈ ℝ , x < 0 {  . 
Determine 

(a) f − 1 ( x )  clearly stating its domain
 

(b) the values of a for which f ( a )  = f − 1 ( a )  .
 

Solution: 

(a) Let y = 2x2 − 3
 

y + 3 = 2x2 

= x2 

\  = x
 

The domain of f− 1 ( x )  is the range of f (x )  . 

f ( x )  = 2x2 − 3 { x ∈ ℝ , x < 0 {   

has range f (x ) > − 3  
Hence f− 1 ( x )  must be the negative square root 

f − 1 ( x )  = − \  has domain x ∈ ℝ , x > − 3
 

 

(b) If f ( a )  = f − 1 ( a )  then a is negative (see graph).
 

Solve f ( a )  = a 

y + 3

2

y + 3

2

x + 3

2
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2a2 − 3 = a 

2a2 − a − 3 = 0 
( 2a − 3 ) ( a + 1 ) = 0  

a =  , − 1
 

Therefore a = − 1 

3

2
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Edexcel AS and A Level Modular Mathematics 
Exercise F, Question 1 

Question: 

Categorise the following as 
(i) not a function 
(ii) a one-to-one function 
(iii) a many-to-one function. 

(a)  

(b)  
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(c)  

(d)  

(e)  
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(f)  

Solution: 

(a) not a function 

 

x value a gets mapped to two values of y. 
x value b gets mapped to no values 

(b) one-to-one function 
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(c) many-to-one function 

 

(d) many-to-one function 

 

(e) not a function 
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x value a doesn't get mapped to any value of y. 
It could be redefined as a function if the domain is said to exclude point a. 

(f) not a function 

 

x values less than a don't get mapped anywhere. 
Again we could define the domain to be x  ≥  a and then it would be a 
function. 
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Exercise F, Question 2 

Question: 

The following functions f(x), g(x) and h(x) are defined by 
 

(a) Find f(7), g(3) and h ( − 2 )  . 

(b) Find the range of f(x) and the range of g(x). 

(c) Find g− 1 ( x )  .
 

(d) Find the composite function fg(x). 

(e) Solve gh ( a )  = 244. 

f ( x )  = 4 ( x − 2 )  { x ∈ ℝ , x  ≥  0 {  

g ( x )  = x3 + 1 { x ∈ ℝ {  

h ( x )  = 3x { x ∈ ℝ {  

Solution: 

(a) f ( 7 )  = 4 ( 7 − 2 ) = 4 × 5 = 20  
g ( 3 )  = 33 + 1 = 27 + 1 = 28 

h ( − 2 )  = 3− 2 =  =  
 

(b) f ( x )  = 4 ( x − 2 ) = 4x − 8  
This is a straight line with gradient 4 and intercept − 8. 
The domain tells us that x  ≥  0. 

 

1

32

1

9
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The range of f(x) is f ( x ) ∈ ℝ , f ( x )  ≥  − 8  

g ( x )  = x3 + 1 

 

The range of g(x) is g ( x ) ∈ ℝ  

(c) Let y = x3 + 1 (change the subject of the formula)
 

y − 1 = x3 
3\ y − 1 = x 

Hence g− 1 ( x )  = 3\ x − 1 { x ∈ ℝ {   

(d) fg ( x )  = f ( x3 + 1 )  = 4 (x3 + 1 − 2 )  = 4 (x3 − 1 )  
 

(e) Find gh(x) first. 
gh ( x )  = g ( 3x ) = ( 3x )  3 + 1 = 33x + 1  
If gh ( a )  = 244 
33a + 1 = 244 

33a = 243 

33a = 35 
3a = 5 

a =  
 5

3
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Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise F, Question 3 

Question: 

The function n(x) is defined by 

n ( x )  =  
 

(a) Find n ( − 3 )  and n(3). 

(b) Find the value(s) of a such that n ( a )  = 50. 

 
 


5 − x x  ≤  0

x2 x > 0

Solution: 

 

y = 5 − x is a straight line with gradient − 1 passing through 5 on the y axis. 
y = x2 is a  ∪  -shaped quadratic passing through (0, 0). 

(a) n ( − 3 )  = 5 − ( − 3 ) = 5 + 3 = 8  
n ( 3 )  = 32 = 9 

(b) There are two values of a. 
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The negative value of a is where 
5 − a = 50 
a = 5 − 50 
a = − 45 
The positive value of a is where 
a2 = 50 
a = \ 50 
a = 5 √ 2 
The values of a such that n ( a )  = 50 are − 45 and + 5 √ 2. 
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Edexcel AS and A Level Modular Mathematics 
Exercise F, Question 4 

Question: 

The function g(x) is defined as g (x )  = 2x + 7 { x ∈ ℝ , x  ≥  0 {  . 

(a) Sketch g(x) and find the range. 

(b) Determine g− 1 ( x )  , stating its domain.
 

(c) Sketch g− 1 ( x )  on the same axes as g(x), stating the relationship between 
the two graphs. 

Solution: 

(a) y = 2x + 7 is a straight line of gradient 2 passing through 7 on the y axis. 
The domain is given as x  ≥  0. 

 

Hence the range is g (x )  ≥  7  

(b) The domain of the inverse function is x  ≥  7. 
To find the equation of the inverse function use a flow chart. 
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g − 1 ( x )  =  and has domain x  ≥  7
 

(c)  

g − 1 ( x )  is the reflection of g(x) in the line y = x.
 

x − 7

2
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Edexcel AS and A Level Modular Mathematics 
Exercise F, Question 5 

Question: 

The functions f and g are defined by 
f : x → 4x − 1 { x ∈ ℝ {   

g : x →  x ∈ ℝ , x ≠  
 

Find in its simplest form: 

(a) the inverse function f− 1
 

(b) the composite function gf, stating its domain 

(c) the values of x for which 2f (x ) = g ( x )  , giving your answers to 3 decimal 
places. 

 

3

2x − 1

 
 


1

2

 
 


Solution: 

(a) f : x → 4x − 1 
Let y = 4x − 1 and change the subject of the formula. 
 ⇒  y + 1 = 4x 

 ⇒  x =  
 

Hence f− 1 : x →  
 

(b) gf ( x )  = g ( 4x − 1 )  =  =  

 

Hence gf :x →  
 

The domain would include all the real numbers apart from x =  (i.e. where 

8x − 3 = 0). 

(c) If 2f ( x ) = g ( x )   

2 × ( 4x − 1 )  =  
 

y + 1

4

x + 1

4

3

2 ( 4x − 1 ) − 1 

3

8x − 3

3

8x − 3

3

8

3

2x − 1
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8x − 2 =  
 

( 8x − 2 ) ( 2x − 1 ) = 3  
16x2 − 12x + 2 = 3 

16x2 − 12x − 1 = 0 

Use x =  with a = 16, b = − 12 and c = − 1.
 

Then x =  =  = 0.826 , − 0.076
 

Values of x are − 0.076 and 0.826 

3

2x − 1

− b ± \ b2 − 4ac

2a

12 ± \ 144 + 64

32

12 ± \ 208

32

Page 2 of 2Heinemann Solutionbank: Core Maths 3 C3

3/9/2013file://C:\Users\Buba\kaz\ouba\c3_2_f_5.html



Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise F, Question 6 

Question: 

The function f(x) is defined by 

f ( x )  =  
 

(a) Sketch the graph of f(x) for − 2  ≤  x  ≤  6. 

(b) Find the values of x for which f ( x )  = −  .

 

 

 
 


− x x  ≤  1
x − 2 x > 1

1

2

Solution: 

(a)  

For x  ≤  1, f ( x )  = − x 
This is a straight line of gradient − 1. 
At point x = 1, its y coordinate is − 1. 
For x > 1, f ( x )  = x − 2 
This is a straight line of gradient + 1. 
At point x = 1, its y coordinate is also − 1. 
The graph is said to be continuous. 

(b) There are two values at which f (x )  = −  (see graph).

 
1

2
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Point a is where 

− x = −   ⇒  x =  
 

Point b is where 

x − 2 = −   ⇒  x = 1 
 

The values of x for which f ( x )  = −  are and 1 .
 

1

2

1

2

1

2

1

2

1

2

1

2

1

2
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Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise F, Question 7 

Question: 

The function f is defined by 

f : x →  x ∈ ℝ , x > 1  
 

(a) Find f − 1 ( x )  .
 

(b) Find (i) the range of f− 1 ( x )  
 

(ii) the domain of f− 1 ( x )  . 

 

2x + 3

x − 1

 
 


 
 


Solution: 

(a) To find f − 1 ( x )  change the subject of the formula.
 

Let y =  
 

y ( x − 1 ) = 2x + 3  
yx − y = 2x + 3 
yx − 2x = y + 3 
x ( y − 2 ) = y + 3  

x =  
 

Therefore f− 1 : x →  
 

(b) f(x) has domain {x ∈ ℝ , x > 1 {  and range { f (x ) ∈ ℝ , f ( x ) > 2
{   

As x → ∞ , y →  = 2
 

2x + 3

x − 1

y + 3

y − 2

x + 3

x − 2

2x

x
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So f− 1 ( x )  has domain {x ∈ ℝ , x > 2 {  and range { f− 1 ( x )  

∈ ℝ , f − 1  x  > 1  
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Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise F, Question 8 

Question: 

The functions f and g are defined by 

f : x →  x ∈ ℝ , x ≠ 2  
 

g : x →  x ∈ ℝ , x ≠ 0  
 

(a) Find an expression for f− 1 ( x )  .
 

(b) Write down the range of f− 1 ( x )  .
 

(c) Calculate gf(1.5). 

(d) Use algebra to find the values of x for which g (x )  = f ( x ) + 4 . 

 

x

x − 2

 
 


 
 


3

x

 
 


 
 


Solution: 

(a) To find f − 1 ( x )  change the subject of the formula.
 

Let y =  
 

y ( x − 2 ) = x  
yx − 2y = x (rearrange) 
yx − x = 2y 
x ( y − 1 ) = 2y  

x =  
 

It must always be rewritten as a function in x: 

f − 1  x  =  
 

(b) The range of f− 1 ( x )  is the domain of f (x )  .
 

Hence range is { f− 1 ( x ) ∈ ℝ , f − 1 ( x ) ≠ 2 {  . 

x

x − 2

2y

y − 1

 


 


2x

x − 1
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(c) gf ( 1.5 )  = g  = g  = g ( − 3 )  =  = − 1 
 

(d) If g ( x )  = f ( x ) + 4  

=  + 4  × x  x − 2  
 

3 ( x − 2 ) = x × x + 4x ( x − 2 )   
3x − 6 = x2 + 4x2 − 8x 

0 = 5x2 − 11x + 6 
0 = ( 5x − 6 ) ( x − 1 )   

 ⇒  x =  , 1
 

The values of x for which g (x )  = f ( x ) + 4 are and 1.
 

 


1.5

1.5 − 2
 


 


1.5

− 0.5
 


3

− 3

3

x

x

x − 2
 


 


 


 


6

5

6

5
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Solutionbank  
Edexcel AS and A Level Modular Mathematics 
Exercise F, Question 9 

Question: 

The functions f and g are given by 

f : x →  −  x ∈ ℝ , x > 1  
 

g : x →  x ∈ ℝ , x > 0  
 

(a) Show that f (x )  =  .

 

(b) Find the range of f (x )  . 

(c) Solve gf (x )  = 70. 

 

x

x2 − 1

1

x + 1

 
 


 
 


2

x

 
 


 
 


1

( x − 1 ) ( x + 1 )  

Solution: 

(a) f ( x )  =  −  

 

=  −  
 

=  −  
 

=  
 

=  
 

(b) The range of f (x )  is the set of values that y take. 

By using a graphical calculator we can see that y = f  x  

x ∈ ℝ , x ≠ − 1 , x ≠ 1  is a symmetrical graph about the y axis.
 

x

x2 − 1

1

x + 1

x

( x + 1 ) ( x − 1 )  

1

( x + 1 )  

x

( x + 1 ) ( x − 1 )  

x − 1

( x + 1 ) ( x − 1 )  

x − ( x − 1 )  

( x + 1 ) ( x − 1 )  

1

( x + 1 ) ( x − 1 )  
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For x > 1, f ( x ) > 0  

(c) gf ( x )  = g  =  = 2 ×  

= 2  x − 1  x + 1  
 

If gf ( x )  = 70 
2 ( x − 1 ) ( x + 1 ) = 70  
( x − 1 ) ( x + 1 ) = 35  

x2 − 1 = 35 

x2 = 36 
x = ± 6 

 


1

( x − 1 ) ( x + 1 )  
 


2

1

( x − 1 ) ( x + 1 )  

( x − 1 ) ( x + 1 )  

1
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