Algebra and functions Exercise A, Question 1

Question:

Simplify
$$\frac{x^2 - 2x - 3}{x^2 - 7x + 12}$$
.

Solution:

$$\frac{x^2 - 2x - 3}{x^2 - 7x + 12}$$

= $\frac{(x - 3)(x + 1)}{(x - 3)(x - 4)}$

$$= \frac{x+1}{x-4}$$

© Pearson Education Ltd 2008

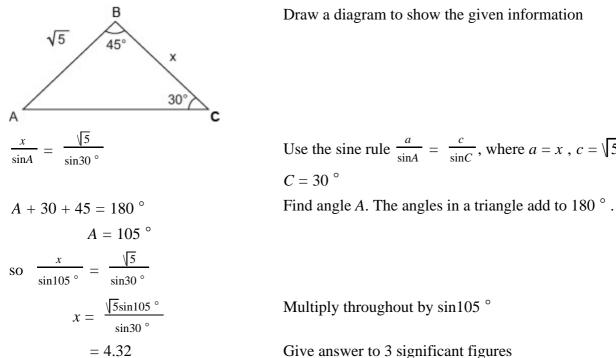
Factorise $x^2 - 2x - 3$: $(-3) \times (+1) = -3$ (-3) + (+1) = -2so $x^2 - 2x - 3 = (x - 3) (x + 1)$ Factorise $x^2 - 7x + 12$: $(-3) \times (-4) = +12$ (-3) + (-4) = -7so $x^2 - 7x + 12 = (x - 3) (x - 4)$ Divide top and bottom by (x - 3)

Algebra and functions Exercise A, Question 2

Question:

In $\triangle ABC$, AB = $\sqrt{5}$ cm, $\angle ABC = 45^{\circ}$, $\angle BCA = 30^{\circ}$. Find the length of BC.

Solution:



Use the sine rule $\frac{a}{\sin A} = \frac{c}{\sin C}$, where a = x, $c = \sqrt{5}$ and

Give answer to 3 significant figures

Algebra and functions Exercise A, Question 3

Question:

(a) Write down the value of $\log_{3}81$

(b) Express 2 $\log_a 4 + \log_a 5$ as a single logarithm to base *a*.

Solution:

(a)

$$\log_{3}81 = \log_{3} (3^{4})$$

$$= 4\log_{3}^{3}$$

$$= 4 \times 1$$

$$= 4$$
(b)

$$2\log_{a}4 + \log_{a}5$$

$$= \log_{a}(4^{2} \times 5)$$

$$= \log_{a}(4^{2} \times 5)$$

$$= \log_{a}80$$
Write 81 as a power of 3, 81 = 3 \times 3 \times 3 \times 3 = 3^{4}.
Use the power law: $\log_{a} (x^{k}) = k\log_{a}x$, so that $\log_{3} (3^{k}) = 4\log_{3}3$
Use the power law: $\log_{a} (x^{k}) = k\log_{a}x$, so that $\log_{3} (3^{k}) = 4\log_{3}3$
Use the power law: $\log_{a} (x^{k}) = k\log_{a}x$, so that $2\log_{a}4 = \log_{a}(4^{2} \times 5)$
Use the power law: $\log_{a} (x^{k}) = k\log_{a}x$, so that $2\log_{a}4 = \log_{a}4^{2}$
Use the, multiplication law: $\log_{a}xy = \log_{a}x + \log_{a}y$ so that $\log_{a}4^{2} + \log_{a}5 = \log_{a}(4^{2} \times 5)$

Algebra and functions Exercise A, Question 4

Question:

P is the centre of the circle $(x-1)^2 + (y+4)^2 = 81$.

Q is the centre of the circle $(x + 3)^2 + y^2 = 36$.

Find the exact distance between the points P and Q.

Solution:

 $(x-1)^{2} + (y+4)^{2} = 81$ The Coordinates of *P* are (1, -4).

 $(x+3)^{2} + y^{2} = 36$ The Coordinates of *Q* are (-3, 0).

$$\frac{PQ}{(-4)^{2}} = \sqrt{(-3-1)^{2} + (0-2)^{2}}$$
$$= \sqrt{(-4)^{2} + (4)^{2}}$$
$$= \sqrt{16+16}$$
$$= \sqrt{32}$$

Compare
$$(x-1)^2 + (y+4)^2 = 8$$
 to $(x-a)^2 + (y-b)^2 = r^2$, where (a, b) is the centre.

Compare
$$(x + 3)^2 + y^2 = 36$$
 to $(x - a)^2 + (y - b)^2 = r^2$ where (a, b) is the centre.
use $d = \sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2]}$, where $(x_1, y_1) = (1, -4)$ and $(x_2, y_2) = (-3, 0)$

Algebra and functions Exercise A, Question 5

Question:

Divide
$$2x^3 + 9x^2 + 4x - 15$$
 by $(x + 3)$.

Solution:

© Pearson Education Ltd 2008

Start by dividing the first term of the polynomial by x, so hat $2x^3 \div x = 2x^2$. Next multiply (x + 3) by $2x^2$, so hat $2x^2 \times (x + 3) = 2x^3 + 6x^2$. Now subtract, so that $(2x^3 + 9x^2) - (2x^3 + 6x^2) = 3x^2$. Copy + 4x.

Repeat the method. Divide $3x^2$ by x, so that $3x^2 \div x = 3x$. Aultiply (x + 3) by 3x, so that $3x \times (x + 3)$ $= 3x^2 + 9x$. Subtract, so that $(3x^2 + 4x) - (3x^2 + 9x) = -5x$. Copy -15

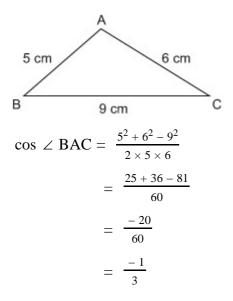
epeat the method. Divide -5x by x, so that $-5x \div x = -5$. Multiply (x + 3) by -5, so that $-5 \times (x + 3) = -5x - 15$. Subtract, so that -5x - 15) - (-5x - 15) = 0.

Algebra and functions Exercise A, Question 6

Question:

In $\triangle ABC$, AB = 5cm, BC = 9cm and CA = 6cm. Show that $cos \angle TRS = -\frac{1}{3}$.

Solution:



Draw a diagram using the given data.

Use the Cosine rule $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$, where $A = \angle BAC, a = 9 \text{ (cm)}, b = 6 \text{ (cm)}, c = 5 \text{ (cm)}$

Algebra and functions Exercise A, Question 7

Question:

(a) Find, to 3 significant figures, the value of *x* for which $5^x = 0.75$

(b) Solve the equation $2 \log_5 x - \log_5 3x = 1$

Solution:

(a)

 $5^{x} = 0.75$

 $\log_{10} (5^{x}) = \log_{10} 0.75$ $x \ \log_{10} 5 = \log_{10} 0.75$

$$x = \frac{\log_{10} 0.75}{\log_{10} 5}$$
$$= -0.179$$

 $2\log_{5} x - \log_{5} 3x = 1$ $\log_{5} (x^{2}) - \log_{5} 3x = 1$ $\log_{5} (\frac{x^{2}}{3x}) = 1$

 $\log_5\left(\frac{x}{3}\right) = 1$ $\log_5\left(\frac{x}{3}\right) = \log_5 5$ so $\frac{x}{3} = 5$ x = 15.

© Pearson Education Ltd 2008

Take logs to base 10 of each side.

Use the Power law: $\log_a (x^k) = k \log_a x$ so that $\log_{10} (5^x) = x \log_{10} 5^5$ Divide both sides by $\log_{10} 5$

Give answer to 3 significant figures

Use the Power law: $\log_a (x^k) = k \log_a x$ so that $2 \log_5 x = \log_5 (x^2)$ Use the division law: $\log_a (\frac{x}{y}) = \log_a x - \log_b y$ so that $\log_5 (x^2) - \log_5 (3x) = \log_5 (\frac{x^2}{3x})$.

Simplify. Divide top and bottom by *x*, so that $\frac{x^2}{3x} = \frac{x}{3}$. Use $\log_a a = 1$, so that $1 = \log_5 5$

Compare the logarithms, they each have the same base, so $\frac{x}{3} = 5$.

Algebra and functions Exercise A, Question 8

Question:

The circle C has equation $(x + 4)^2 + (y - 1)^2 = 25$.

The point P has coordinates (-1, 5).

(a) Show that the point P lies on the circumference of C.

(b) Show that the centre of *C* lies on the line x - 2y + 6 = 0.

Solution:

(a) Substitute (-1, 5) into (x + 4) $(-1 + 4)^2 = 25$. $(-1 + 4)^2 + (5 - 1)^2 = 3^2 + 4^2$ = 9 + 16= 25 as required

so *P* lies on the circumference of the circle.

(b) The Centre of *C* is (-4, 1)

Substitute (-4, 1) into x - 2y + 6 = 0 (-4) - 2(1) + 6 = -4 - 2 + 6 = 0 As required so the centre of *C* lies on the line x - 2y + 6 = 0.

© Pearson Education Ltd 2008

Any point (x, y) on the circumference of a circle satisfies the equation of the circle.

Compare $(x + 4)^{2} + (y - 1)^{2} = 25$ to $(x - a)^{2}$ + $(y - b)^{2} = r^{2}$ where (a, b) is the centre.

Any point (x, y) on a line satisfies the equation of the line.

Algebra and functions Exercise A, Question 9

Question:

(a) Show that (2x - 1) is a factor of $2x^3 - 7x^2 - 17x + 10$.

(b) Factorise $2x^3 - 7x^2 - 17x + 10$ completely.

Solution:

(a)
f (x) =
$$2x^3 - 7x^2 - 17x + 10$$

f $(\frac{1}{2}) = 2(\frac{1}{2})^3 - 7(\frac{1}{2})^2 - 17(\frac{1}{2})$
+ 10
= $2 \times \frac{1}{8} - 7 \times \frac{1}{4} - 17 \times \frac{1}{2} + 10$
= $\frac{1}{4} - \frac{7}{4} - \frac{17}{2} + 10$
= 0

so, (2x - 1) is a factor of $2x^3 - 7x^2 - 17x + 10$.

Use the remainder theorem: if f(x) is divided by (ax - b), then the remainder is $g\left(\frac{b}{a}\right)$. Compare (2x-1) to (ax-b), so a = 2, b = 1 and the remainder is f $\left(\frac{1}{2}\right)$.

The remainder = 0, so (2x - 1) is a factor of $2x^3 - 7x^2 - 17x + 10.$

(b)

$$\begin{array}{rcl} x^2 - 3x & - & 10 \\ 2x - 1 & 2x^3 - & 7x^2 - & 17x + 10 \\ 2x^2 - & x^2 \\ & - & 6x^2 - & 17x \\ & - & 6x^2 - & 17x \\ & - & 6x^2 + & 3x \\ & - & 20x + & 10 \\ & - & 20x - & 10 \\ 0 \end{array}$$
So $2x^3 - & 7x^2 - & 17x + & 10 = (2x - 1) \\ (x^2 - & 3x - & 10) \\ (x - 5) & (x + 2) \end{array}$
Now factorise $x^2 - & 3x - & 10: \\ (- & 5) + & (+ & 2) = - & 10 \\ (- & 5) + & (+ & 2) = - & 3 \\ & & & 50 - & x^2 - & 3x - & 10 = (x - & 5) \\ (x - & 5) - & & & x^2 - & 3x - & 10 = (x - & 5) \\ (x - & 5) - & & & x^2 - & 3x - & 10 = (x - & 5) \\ (x - & 5) - & & & x^2 - & 3x - & 10 = (x - & 5) \\ \end{array}$

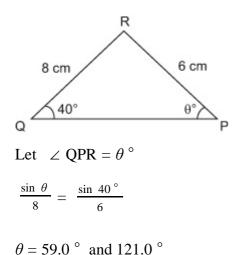
Algebra and functions Exercise A, Question 10

Question:

In ΔPQR , QR = 8 cm, PR = 6 cm and $\angle PQR = 40^{\circ}$.

Calculate the two possible values of $\angle QPR$.

Solution:



Draw a diagram using the given data.

Use $\frac{\sin P}{p} = \frac{\sin Q}{q}$, where $P = \theta^{\circ}$, $p = 8 \pmod{n}$, $Q = 40^{\circ}$, $q = 6 \pmod{n}$. As $\sin (180 - \theta)^{\circ} = \sin \theta^{\circ}$, $\theta = 180^{\circ} - 59.0^{\circ} = 121.0^{\circ}$ is the other possible answer.

Algebra and functions Exercise A, Question 11

Question:

(a) Express $\log_2\left(\frac{4a}{b^2}\right)$ in terms of $\log_2 a$ and $\log_2 b$.

(b) Find the value of $\log_{27} \frac{1}{9}$.

Solution:

(a) $\log_2 \left(\frac{4a}{b^2} \right)$ = $\log_2 4a - \log_2 (b^2)$ = $\log_2 4 + \log_2 a - \log_2 (b^2)$ = $2 + \log_2 a - 2 \log_2 b$

Use the division law: $\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$, so that $\log_2 \left(\frac{4a}{b^2}\right) = \log_2 4a - \log_2 b^2$. Use the multiplication law: $\log_a (xy)$ $= \log_a x + \log_b y$, so that $\log_2 4a = \log_2 4 + \log_2 a$ Simplify $\log_2 4$ $\log_2 4 = \log_2 (2^2)$ $= 2 \log_2 2$ $= 2 \times 1$ = 2

Use the power law: $\log_a (x^K) = K \log_a x$, so that $\log_2 (b^2) = 2 \log_2 b$.

(b)

 $\log_{27}\left(\frac{1}{9}\right) = \frac{\log_{10}\left(\frac{1}{9}\right)}{\log_{10}(27)}$ Change the base of the logarithm. Use $\log_{a}x = \frac{\log_{b}x}{\log_{b}a}$, so $= -\frac{2}{3}$ that $\log_{27}\left(\frac{1}{9}\right) = \frac{\log_{10}\left(\frac{1}{9}\right)}{\log_{10}(27)}$.

Alternative method:

$$\log_{27} \left(\frac{1}{9} \right) = \log_{27} \left(9^{-1} \right)$$
$$= -\log_{27} \left(9 \right)$$

Use index rules:
$$x^{-1} = \frac{1}{x}$$
, so that $\frac{1}{9} = 9^{-1}$
Use the power law $\log_{a}(x^{K}) = K \log_{a} x$.

$$= -\log_{27} (3^{2})$$

$$= -2\log_{27} (3)$$
Use the power law $\log_{a} (x^{K}) = K \log_{a} x$.

$$= -2\log_{27} (27^{\frac{1}{3}})$$

$$= \frac{-2}{3}\log_{27} 27$$
Use the power law $\log_{a} (x^{K}) = K \log_{a} x$.

$$= \frac{-2}{3} \times 1$$
Use log $_{a}a = 1$, so that $\log_{27} 27 = 1$

$$= \frac{-2}{3}$$

Algebra and functions Exercise A, Question 12

Question:

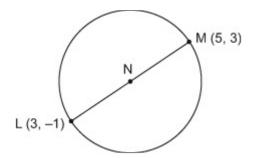
The points L(3, -1) and M(5, 3) are the end points of a diameter of a circle, centre N.

(a) Find the exact length of *LM*.

(b) Find the coordinates of the point N.

(c) Find an equation for the circle.

Solution:



Draw a diagram using the given information

LM =
$$\sqrt{(5-3)^2 + 3 - (-1)^2}$$
 Use $d = \sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2]}$ with
= $\sqrt{(2)^2 + (4)^2}$ $(x_1, y_1) = (3, -1)$ and $(x_2, y_2) = (5, 3)$
= $\sqrt{4+16}$
= $\sqrt{20}$

(b)

The Coordinates of N are
$$\left(\frac{3+5}{2}, \text{ Use } \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) \text{ with } (x_1, y_1) = (3, -1)$$

 $\frac{-1+3}{2} = (4, 1)$. and $(x_2, y_2) = (5, 3)$.

(c)

The equation of the Circle is

$$(x-4)^{2} + (y-1)^{2} = (\frac{\sqrt{20}}{2})$$
Use $(x-a)^{2} + (y-b)^{2} = r^{2}$ where (a, b) is the centre and r is the radius. Here $(a, b) = (4, 1)$ and $r = \frac{\sqrt{20}}{2}$.
 $(x-4)^{2} + (y-1)^{2} = 5$
 $(\frac{\sqrt{20}}{2})^{2} = \frac{\sqrt{20}}{2} \times \frac{\sqrt{20}}{2} = \frac{20}{4} = 5$

Algebra and functions Exercise A, Question 13

Question:

f (x) = $3x^3 + x^2 - 38x + c$

Given that f(3) = 0,

(a) find the value of c,

(b) factorise f (x) completely,

(c) find the remainder when f (x) is divided by (2x - 1).

Solution:

f (x) =
$$3x^3 + x^2 - 38x + c$$

(a)

 $3(3)^{3} + (3)^{2} - 38(3) + c = 0$ $3 \times 27 + 9 - 114 + c = 0$ c = 24so f (x) = $3x^{3} + x^{2} - 38x + 24$.

(b)

f (3) = 0, so (x - 3) is a factor of

$$3x^3 + x^2 - 38x + 24$$

 $x - 3\overline{\smash{\big)}\ 3x^3 + x^2 - 38x + 24}$
 $3x^3 - 9x^2$
 $10x^2 - 38x$
 $10x^2 - 30x$
 $- 8x - 24$
 $- 8x + 24$
0

Use the factor theorem: If f(p) = 0, then (x - p) is a factor of f(x). Here p = 3First divide $3x^3 + x^2 - 38x + 24$ by (x - 3).

Substitute x = 3 into the polynomial.

so $3x^3 + x^2 - 38x + 24 = (x - 3)$ $(3x^2 + 10x - 8)$ = (x - 3) (3x - 2)(x + 4).

Now factorise $3x^2 + 10x - 8$. ac = -24 and (-2) + (+12) = +10(=b) so $3x^2 + 10x - 8 = 3x^2 - 2x + 12x - 8$. = x(3x - 2) + 4(3x - 2)= (3x - 2)(x + 4)

(c)

The remainder when f (x) is divided by (2x - 1) Use the rule that if f (x) is divided by is f $(\frac{1}{2})$ (ax - b) then the remainder is f $(\frac{a}{b})$.

 $file://C: Users Buba kaz ouba C2_rev1_A_13.html$

$$f(\frac{1}{2}) = 3(\frac{1}{2})^{3} + (\frac{1}{2})^{2} - 38(\frac{1}{2})^{3}$$

+ 24
= $\frac{3}{8} + \frac{1}{4} - 19 + 24$
= $5\frac{5}{8}$

Algebra and functions Exercise A, Question 14

Question:

In $\triangle ABC$, AB = 5 cm, BC = (2x - 3) cm, CA = (x + 1) cm and $\angle ABC = 60^{\circ}$.

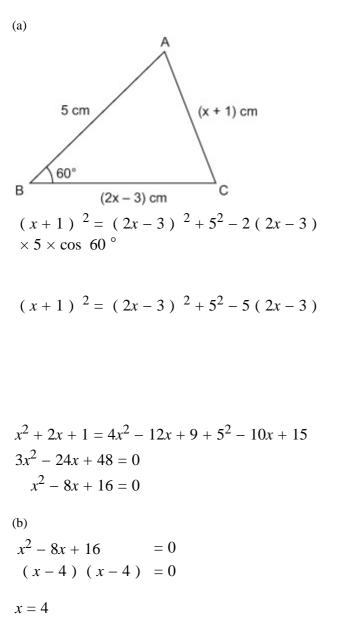
(a) Show that x satisfies the equation $x^2 - 8x + 16 = 0$.

(b) Find the value of *x*.

(c) Calculate the area of the triangle, giving your answer to 3 significant figures.

Solution:

(c)

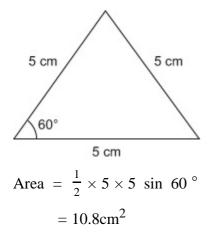


Draw a diagram using the given data.

Use the cosine rule: $b^2 = a^2 + c^2 - 2ac \cos B$, where $a = (2x - 3) \operatorname{cm}, b = (x + 1) \operatorname{cm}, c = 5 \operatorname{cm}, B = 60^\circ.$ $\cos 60^\circ = \frac{1}{2}, \operatorname{so} 2(2x - 3) \times 5 \times \cos 60^\circ$ $= 2(2x - 3) \times 5 \times \frac{1}{2}$ = 5(2x - 3)

Factorize $x^2 - 8x + 16 = 0$ (-4) × (-4) = +16 (-4) + (-4) = -8 so $x^2 - 8x + 16 = (x - 4) (x - 4)$

 $file://C:\Users\Buba\kaz\ouba\C2_rev1_A_14.html$



Draw the diagram using x = 4

Use Area =
$$\frac{1}{2}ac$$
 sin B, where
a = 5cm, c = 5cm, B = 60 °

Algebra and functions Exercise A, Question 15

Question:

(a) Solve $0.6^{2x} = 0.8$, giving your answer to 3 significant figures.

(b) Find the value of x in $\log_{x} 243 = 2.5$

Solution:

(a) $0.6^{2x} = 0.8$ $\log_{10} 0.6^{2x} = \log_{10} 0.8$ $2x \log_{10} 0.6 = \log_{10} 0.8$

 $2x = \frac{\log_{10} 0.8}{\log_{10} 0.6}$ $x = \frac{1}{2} \left(-\frac{\log_{10} 0.8}{\log_{10} 0.6} \right)$ = 0.218

Take logs to base 10 of each side.

Use the power law: $\log_a (x^K) = K \log_a x$, so that $\log_{10} 0.6^{2x} = 2x \log_{10} 0.6$. Divide throughout by $\log_{10} 0.6$

 $\log_{x} 243 = 2.5$ $\frac{\log_{10} 243}{\log_{10} x} = 2.5$

(b)

 $\log_{10} x = \frac{\log_{10} 243}{2.5}$ so $x = 10^{\left(\frac{\log_{10} 243}{2.5}\right)}$ = 9 Change the base of the logarithm. Use $\log_{a} x = \frac{\log_{b} x}{\log_{b} a}$, so that $\log_{x} 243 = \frac{\log_{10} 243}{\log_{10} x}$. Rearrange the equation for *x*.

log $_{a}n = x$ means that $a^{x} = n$, so log $_{10}x = C$ means $x = 10^{c}$, where $c = \frac{\log_{10}243}{2.5}$.

Algebra and functions Exercise A, Question 16

Question:

Show that part of the line 3x + y = 14 forms a chord to the circle $(x - 2)^2 + (y - 3)^2 = 5$ and find the length of this chord.

Solution:

Solve the equations simultaneously. $(x-2)^{2} + (y-3)^{2} = 5$ 3x + y= 14y = 14 - 3x $(x-2)^{2} + (14-3x-3)^{2} = 5$ Rearrange 3x + y = 14 for y and substitute into $(x-2)^{2} + (14-3x-3)^{2} = 5$ $(y-3)^2 = 5.$ $(x-2)^{2} + (11-3x)^{2} = 5$ Expand and simplify. $(x-2)^2 = x^2 - 4x + 4$ $(11 - 3x)^2 = 121 - 66x + 9x^2$ $x^{2} - 4x + 4 + 121 - 66x + 9x^{2} = 5$ $10x^2 - 70x + 120 = 0$ Divide throughout by 10 $x^2 - 7x + 12 = 0$ Factorize $x^2 - 7x + 12 = 0$ (x-3)(x-4) $(-4) \times (-3) = +12$ (-4) + (-3) = -7= 0so $x^2 - 7x + 12 = (x - 3) (x - 4)$

Two values of x, so two points of intersection.

so x = 3, x = 4So part of the line forms a chord to the Circle.

When
$$x = 3$$
, $y = 14 - 3(3)$
= $14 - 9$
= 5

Find the coordinates of the points where the line meets the circle. Substitute x = 3 into y = 14 - 3x. Substitute x = 4 into y = 14 - 3x

When x = 4, y = 14 - 3(4)= 14 - 12

So the line meets the chord at the points (3,5) and (4,2).

= 2

The distance between these points is

$$\frac{\sqrt{(4-3)}^{2} + (x_{2}-5)^{2}}{(2-5)^{2}} = \sqrt{\frac{1^{2} + (x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}}{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}}}$$
Find the distance between the points (3,5) and (4,2) use

$$\sqrt{((x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2})} = (3,5) \text{ and } (x_{2},y_{2}) = (4,2).$$

Algebra and functions Exercise A, Question 17

Question:

 $g(x) = x^3 - 13x + 12$

(a) Find the remainder when g (x) is divided by (x-2).

(b) Use the factor theorem to show that (x - 3) is a factor of g (x).

(c) Factorise g (x) completely.

Solution:

(a)
$$g(x) = x^3 - 13x + 12$$

 $g(2) = (2)^3 - 13(2) + 12$
 $= 8 - 26 + 12$
 $= -6.$
Use the remainder theorem: If $g(x)$ is divided by $(ax - b)$, then the remainder is $g(\frac{b}{a})$. Compare $(x - 2)$ to
 $(ax - b)$, so $a = 1, b = 2$ and the remainder is $g(\frac{2}{1})$, ie g
(2).

of g(x). Here p = 3

Use the factor theorem: If g(p) = 0, then (x - p) is a factor

$$g(3) = (3)^{3} - 13(3) + 12$$

= 27 - 29 + 12
= 0
so (x - 3) is a factor of
 $x^{3} - 13x + 12$.

$$\begin{array}{l}
x^{2} + 3x - 4 \\
x - 3) \overline{x^{3} + 0x^{2} - 13x + 12} \\
x^{3} - 3x^{2} \\
3x^{2} - 13x \\
3x^{2} - 9x \\
- 4x + 12 \\
0 \\
\end{array}$$
First divide $x^{3} - 13x + 12$ by $(x - 3)$. Use $0x^{2}$ so that the sum is laid out correctly
$$\begin{array}{l}
x - 3 \\
x^{3} - 3x^{2} \\
3x^{2} - 9x \\
- 4x + 12 \\
0 \\
\end{array}$$
Factorize $x^{2} + 3x - 4$:
$$(x^{2} + 3x - 4) \\
= (x - 3) (x + 4) (x - 1).
\end{array}$$
Factorize $x^{2} + 3x - 4$:
$$(x + 4) \times (x - 1) = -4 \\
(x + 4) + (x - 1) = +3 \\$$
so $x^{2} + 3x - 4 = (x + 4) (x - 1).$

Algebra and functions Exercise A, Question 18

Question:

The diagram shows $\triangle ABC$, with BC = x m, CA = (2x - 1) m and $\angle BCA = 30^{\circ}$.

Given that the area of the triangle is 2.5 m^2 ,

(a) find the value of *x*,

(b) calculate the length of the line *AB*, giving your answer to 3 significant figures.

Solution:

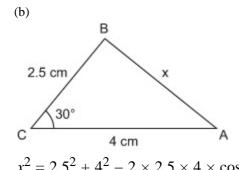
(a)
$$\frac{1}{2}x(2x-1)$$
 sin 30° = 2.5

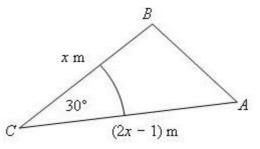
$$\frac{1}{2}x(2x-1) \times \frac{1}{2} = 2.5$$

 $x(2x-1) = 10$
 $2x^2 - x - 10 = 0$
 $(x+2)(2x-5) = 0$
 $x = -2$ and $x = -\frac{5}{2}$

$$x = -2$$
 and $x = 2$

so
$$x = 2.5$$
 m





Here a = x (m), b = (2x - 1) (m) and angle $C = 30^{\circ}$, so use area $= \frac{1}{2}ab \sin C$.

$$\sin 30^{\circ} = \frac{1}{2}$$

Multiply both side by 4 Expand the brackets and rearrange into the form $ax^2 + bx + c = 0$ Factorize $2x^2 - x - 10 = 0$: ac = -20 and (+4) + (-5) = -1 so $2x^2 - x - 10 = 2x^2 + 4x - 5x - 10$ = 2x (x + 2) - 5 (x + 2)= (x + 2) (2x - 5)

x = -2 is not feasible for this problem as BC would have a negative length.

Draw the diagram using x = 2.5 m

 $x^{2} = 2.5^{2} + 4^{2} - 2 \times 2.5 \times 4 \times \cos 30^{\circ}$ Use the cosine rule $c^{2} = a^{2} + b^{2} - 2ab \cos C$, where

x = 2.22 m

$$c = x (m)$$
, $a = 2.5 (m)$, $b = 4 (m)$, $C = 30^{\circ}$

Algebra and functions Exercise A, Question 19

Question:

(a) Solve $3^{2x-1} = 10$, giving your answer to 3 significant figures.

(b) Solve $\log_2 x + \log_2 (9 - 2x) = 2$

Solution:

(a)

 $3^{2x-1} = 10$ $\log_{10} (3^{2x-1}) = \log_{10} 10$ $(2x-1) \log_{10} 3 = 1$

$$2x - 1 = \frac{1}{\log_{10}3}$$
$$2x = \frac{1}{\log_{10}3} + 1$$
$$x = \frac{\frac{1}{\log_{10}3} + 1}{2}$$

$$x = 1.55$$

(b) $\log_2 x + \log_2 (9 - 2x) = 2$ $\log_2 x (9 - 2x) = 2$

so
$$x(9-2x) = 2^{2}$$

 $x(9-2x) = 4$
 $9x-2x^{2} = 4$
 $2x^{2}-9x+4 = 0$
 $(x-4)(2x-1) = 0$

 $x = 4, x = \frac{1}{2}$

Take logs to base 10 of each side. Use the power law: $\log_{a} (x^{K}) = K \log_{a} x$, so that $\log_{10} (3^{2x-1}) = (2x-1) \log_{10} 3$. Use $\log_{a} a = 1$ so that $\log_{10} 10 = 1$ Rearrange the expression, divide both sides by $\log_{10} 3$.

Add 1 to both sides.

Divide both sides by 2

Use the multiplication law: $\log_a (xy) = \log_a x + \log_a y$ so that $\log_2 x + \log_2 (9 - 2x) = \log_2 x (9 - 2x)$. $\log_a n = x$ means $a^x = n$ so $\log_2 x (9 - 2x) = 2$ means $2^2 = x (9 - 2x)$

Factorise $2x^2 - 9x + 4 = 0$ ac = 8, and (-8) + (-1) = -9 so $2x^2 - 9x + 4$ $= 2x^2 - 8x - x + 4$ = 2x (x - 4) - 1 (x - 4)= (x - 4) (2x - 1)

Algebra and functions Exercise A, Question 20

Question:

Prove that the circle $(x + 4)^2 + (y - 5)^2 = 8^2$ lies completely inside the circle $x^2 + y^2 + 8x - 10y = 59$.

Solution:

(a)

$$x^{2} + y^{2} + 8x - 10y = 59$$
Write this circle in the form $(x - a)^{2} + (y - b)^{2}$

$$x^{2} + 8x + y^{2} - 10y = 59$$
Rearrange the equation to bring the *x* terms together

Rearrange the equation to bring the *x* terms together and the *y* terms together.

$$(x + 4)^{2} - 16 + (y - 5)^{2} - 25 = 59$$

 $(x + 4)^{2} + (y - 5)^{2}$
 $^{2} = 100$

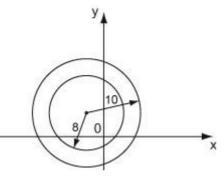
$$(x+4)^{2} + (y-5)^{2}$$

The centre and radius of $x^2 + y^2 + 8x - 10y = 59$ are (-4, 5) and 10.

The centre and radius of $(x + 4)^{2} + (y - 5)^{2} = 8^{2}$ are (-4, 5) and 8.

Both circles have the same centre, but each has a different radius. So, $(x + 4)^2$ + $(y - 5)^2 = 8^2$ lies completely inside $x^2 + y^2 + 8x - 10y = 59$. Complete the square, use $x^2 + 2ax = (x + a)^2 - a^2$ where a = 4, so that $x^2 + 8x = (x + 4)^2 - 4^2$, and where a = -5, so that $x^2 - 10x = (x - 5)^2 - 5^2$.

Compare $(x + 4)^{2} + (y - 5)^{2} = 100$ to $(x - a)^{2} + (y - b)^{2} = r^{2}$, where (a,b) is the centre and *r* is the radius. Here (a, b) = (-4, 5) and r = 10. Compare $(x + 4)^{2} + (y - 5)^{2} = 8^{2}$ to $(x - a)^{2} + (y - b)^{2} = r^{2}$, where (a,b) is the centre and *r* is the radius. Here (a, b) = (-4, 5) and r = 8.



Algebra and functions Exercise A, Question 21

Question:

f (x) = $x^3 + ax + b$, where a and b are constants.

When f (x) is divided by (x - 4) the remainder is 32.

When f (x) is divided by (x+2) the remainder is -10.

(a) Find the value of a and the value of b.

(b) Show that (x-2) is a factor of f(x).

Solution:

(a) f(4) = 32Use the remainder theorem: If f (x) is divided by (ax - ax)b), then the remainder is f $\left(\frac{b}{a}\right)$. Compare (x-4) to so, $(4)^{3} + 4a + b = 32$ 4a + b = -32(ax - b), so a = 1, b = 4 and the remainder is f (4). f(-2) = -10, Use the remainder theorem: Compare (x + 2) to (ax - ax)b), so a = 1, b = -2 and the remainder is f (-2). so $(-2)^{3} + a(-2) + b = 32$ -8 - 2a + b = 32-2a + b = 40Solve simultaneously 4a + b = -32Eliminate b: Subtract the equations, so (4a + b) - (-2a + b) = 6a and (-32) - (40) = -72 -2a + b = 406a = -72so a = -12Substitute a = -12 into 4a + b = -32 4(-12) + b = -32Substitute a = -12 into one of the equations. Here we use 4a + b = -32-48 + b = -32b = 16Substitute the values of a and b into the other equation to check the answer. Here we use -2a + b = 40Check -2a + b = 40-2(-12) + 16 = 24 + 16 = 40(correct) so a = -12, b = 16. so f (x) = $x^3 - 12x + 16$ (b) Use the factor theorem : If f(p) = 0, then (x - p) is a $f(2) = (2)^{3} - 12(2) + 16$ factor of f (x). Here p = 2.

$$= 8 - 24 + 16$$

= 0
so (x - 2) is a factor of $x^3 - 12x + 16$

Algebra and functions Exercise A, Question 22

Question:

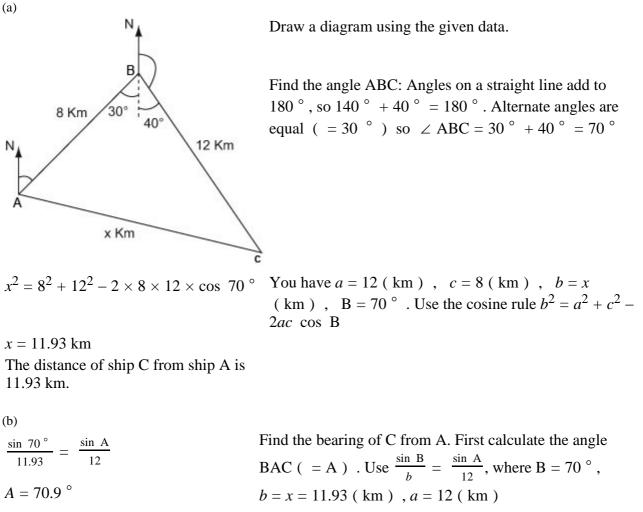
Ship *B* is 8km, on a bearing of 30 $^{\circ}$, from ship *A*.

Ship C is 12 km, on a bearing of 140 $^\circ$, from ship B.

(a) Calculate the distance of ship C from ship A.

(b) Calculate the bearing of ship C from ship A.

Solution:



The Bearing of ship C from Ship A is $30^{\circ} + 70.9^{\circ} = 100.9^{\circ}$ 100.9 °

© Pearson Education Ltd 2008

 $file://C:\Users\Buba\kaz\ouba\C2_rev1_A_22.html$

Algebra and functions Exercise A, Question 23

Question:

(a) Express $\log_p 12 - \left(\frac{1}{2}\log_p 9 + \frac{1}{3}\log_p 8\right)$ as a single logarithm to base *p*.

(b) Find the value of x in $\log_4 x = -1.5$

Solution:

(a)
$$\log_{p} 12 - \frac{1}{2} \left(\log_{p} 9 + \frac{2}{3} \log_{p} 8 \right)$$

= $\log_{p} 12 - \frac{1}{2} \left(\log_{p} 9 + \log_{p} \left(8 \right) \text{ Use the power low: } \log_{a} \left(x^{K} \right) = K \log_{a} x, \text{ so that} \frac{2}{3} \log_{p} 8 = \log_{p} \left(8^{2/3} \right).$
= $\log_{p} 12 - \frac{1}{2} \left(\log_{p} 9 + \log_{p} 4 \right) = 8^{2/3} = \left(8^{1/3} \right)^{2} = 2^{2} = 4$
= $\log_{p} 12 - \frac{1}{2} \log_{p} 36$
= $\log_{p} 12 - \log_{p} \left(36^{1/2} \right)$
Use the multiplication law: $\log_{a} \left(xy \right) = \log_{a} x + \log_{a} y, \text{ so that} \log_{p} 9 + \log_{p} 4 = \log_{p} \left(9 \times 4 \right) = \log_{p} 36$
= $\log_{p} 12 - \log_{p} \left(36^{1/2} \right)$
Use the power law: $\log_{a} \left(x^{k} \right) = k \log_{a} x, \text{ so that} \frac{1}{2} \log_{p} 36 = \log_{p} \left(36^{1/2} \right) = \log_{p} 6$
= $\log_{p} 12 - \log_{p} 6$
Use the division law: $\log_{a} \left(\frac{x}{y} \right) = \log_{a} x - \log_{b} y, \text{ so that} \log_{p} 12 - \log_{p} 6 = \log_{p} \left(\frac{12}{6} \right) = \log_{p} 2$
(b) $\log_{4} x = -1.5$
 $\frac{\log_{10} x}{\log_{10} 4} = -1.5$
Change the base of the logarithm. Use $\log_{a} x = \frac{\log_{10} x}{\log_{10} a}, \text{ so that} \log_{4} x = \frac{\log_{10} x}{\log_{10} 4}$.
 $\log_{10} x = -1.5 \log_{10} 4$
 $\log_{a} n = x \max a^{x} = n, \text{ so } \log_{10} x = c \max x = 10^{c}, \text{ where} = 0.125$

Algebra and functions Exercise A, Question 24

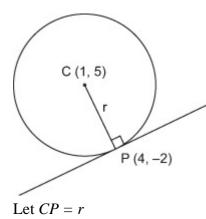
Question:

The point P(4, -2) lies on a circle, centre C(1, 5).

(a) Find an equation for the circle.

(b) Find an equation for the tangent to the circle at P.

Solution:



Draw a diagram using the given information

(a)

$$(x-1)^{2} + (y-5)^{2} = r^{2}$$

$$r = \sqrt{(4-1)^{2} + (-2-5)^{2}}$$

$$= \sqrt{3^{2} + (-7)^{2}}$$

$$= \sqrt{9+49}$$

$$= \sqrt{58}$$

Use $(x-a)^{2} + (y-b)^{2} = r^{2}$ where (a, b) is the centre of the circle. Here (a, b) = (1, 5).

Use
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 where $(x_1, y_1) = (1, 5)$ and $(x_2, y_2) = (4, -2)$.

The equation of the circle is

$$(x-1)^{2} + (y-5)^{2} = (\sqrt{58})^{2}$$

 $(x-1)^{2} + (y-5)^{2} = 58$

2

(b)

The gradient of CP is
$$\frac{-2-5}{4-1} = \frac{-7}{3}$$

Use
$$\frac{y_2 - y_1}{x_2 - x_1}$$
, where $(x_1, y_1) = (1, 5)$ and $(x_2, y_2) = (4, -2)$.

So the gradient of the tangent is $\frac{3}{7}$

The equation of the tangent at P is

The tangent at P is perpendicular to the gradient at P. Use

$$\frac{-1}{m}$$
. Here $m = -\frac{7}{3}$ so $\frac{-1}{(\frac{-7}{3})} = \frac{3}{7}$

Use $y - y_1 = m (x - x_1)$, where $(x_1, y,) = (4, -$

$$y + 2 = \frac{3}{7} (x - 4)$$

2) and
$$m = \frac{3}{7}$$
.

Algebra and functions Exercise A, Question 25

Question:

The remainder when $x^3 - 2x + a$ is divided by (x - 1) is equal to the remainder when $2x^3 + x - a$ is divided by (2x + 1). Find the value of a.

Solution:

f $(x) = x^3 - 2x + a$ g $(x) = 2x^3 + x - a$ f $(1) = g(-\frac{1}{2})$ (1) $^3 - 2(1) + a = 2(-\frac{1}{2})$ Use the remainder theorem: If f (x) is divided by ax - b, then the remainder is $g(\frac{b}{a})$. Compare (2x + 1) to ax - b, so a = 1, b = 1 and the remainder is f(1). Use the remainder theorem: If g(x) is divided by ax - b, then the remainder is $g(\frac{b}{a})$. Compare (2x + 1) to ax - b, so a = 2, b = -1 and the remainder is $g(-\frac{1}{2})$ The remainders are equal so f(1) = g(-1/2).

$${}^{3} + \left(\begin{array}{c} \frac{-1}{2} \right) - a$$

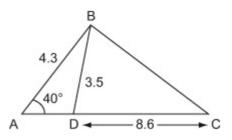
$$1 - 2 + a = -\frac{1}{4} - \frac{1}{2} - a \qquad \left(\begin{array}{c} \frac{-1}{2} \right)^{3} = \frac{-1}{8}$$

$$2a = \frac{1}{4} \qquad 2 \times -\frac{1}{8} = -\frac{1}{4}$$
so $a = \frac{1}{8}$.

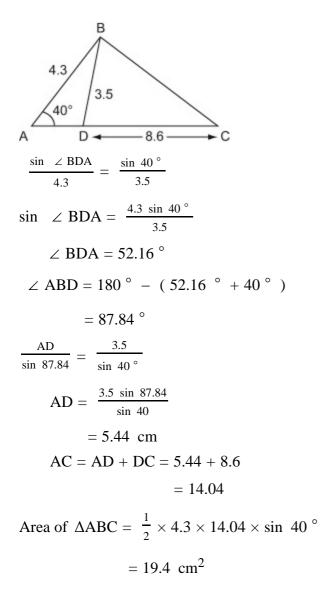
Algebra and functions Exercise A, Question 26

Question:

The diagram shows $\triangle ABC$. Calculate the area of $\triangle ABC$.



Solution:



In $\triangle ABD$, use $\frac{\sin D}{d} = \frac{\sin A}{a}$, where D = $\angle BDA$, d = 4.3, A = 40°, a = 3.5.

Angles in a triangle sum to 180 $^\circ$.

In
$$\triangle ABD$$
, use $\frac{b}{\sin B} = \frac{a}{\sin A}$, where
 $b = AD$, $B = 87.84^{\circ}$, $a = 3.5$, $A = 40^{\circ}$.

In \triangle ABC, use Area = $\frac{1}{2}$ bc sin A where b = 14.04, c = 4.3, A = 40 °.

Algebra and functions Exercise A, Question 27

Question:

Solve $3^{2x+1} + 5 = 16(3^x)$.

Solution:

 $3^{2x+1} + 5 = 16 (3^{x})$ $3 (3^{2x}) + 5 = 16 (3^{x})$ $3 (3^{x})^{2} + 5 = 16 (3^{x})$ let $y = 3^{x}$ so $3y^{2} + 5 = 16y$ $3y^{2} - 16y + 5 = 0$ (3y - 1) (y - 5) = 0 $y = \frac{1}{3}, y = 5$ Now $3^{x} = \frac{1}{3}$, so x = -1. and $3^{x} = 5$, $\log_{10} (3^{x}) = \log_{10} 5$ $x \log_{10} 3 = \log_{10} 5$

$$x = \frac{1}{\log_{10}3}$$

= 1.46
so $x = -1$ and $x = 1.46$

© Pearson Education Ltd 2008

Use the rules for indices: $a^m \times a^n = a^{m+n}$, so that $3^{2x+1} = 3^{2x} \times 3^1$ $= 3 (3^{2x})$. Also, $(a^m)^n = a^{mn}$, so that $3^{2x} = (3^x)^2$.

Factorise $3y^2 - 16y + 5 = 0$. ac = 15 and (-15) + (-1) = -16, so that $3y^2 - 16y + 5 = 3y^2 - 15y - y + 5$ = 3y (y - 5) - 1 (y - 5)= (y - 5) (3y - 1)

Take logarithm to base 10 of each side.

Use the power law: $\log_{a} (x^{K}) = K \log_{a} x$, so that $\log_{10} (3^{x}) = x \log_{10} 3$ Divide throughout by $\log_{10} 3$

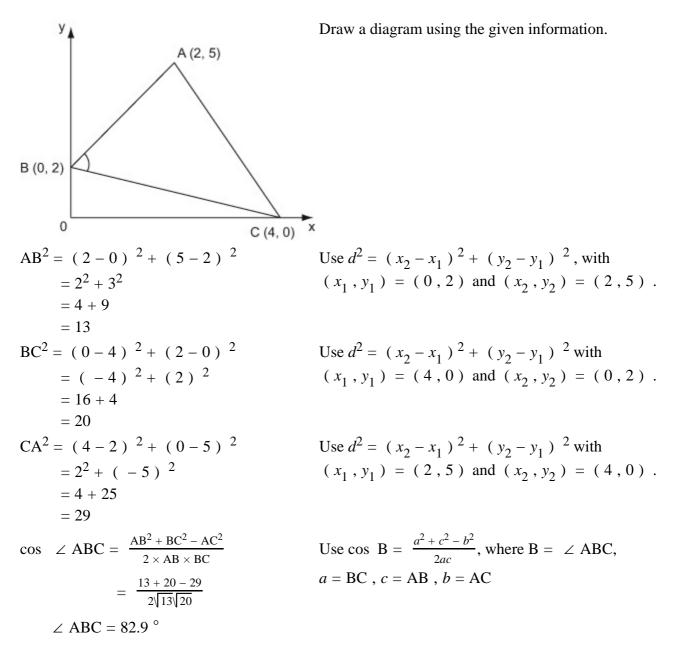
Algebra and functions Exercise A, Question 28

Question:

The coordinates of the vertices of $\triangle ABC$ are A (2,5), B (0,2) and C (4,0).

Find the value of $\cos \angle ABC$.

Solution:



Algebra and functions Exercise A, Question 29

Question:

Solve the simultaneous equations

 $4 \log_{9} x + 4 \log_{3} y = 9$

 $6 \log_{3} x + 6 \log_{27} y = 7$

Solution:

 $4 \log_{0} x + 4 \log_{3} y = 9$ Change the base of the logarithm, use $\log_{a} x = \frac{\log_{b} x}{\log_{a} a}$, so $4 \frac{\log_{3} x}{\log_{3} 9} + 4 \log_{3} y = 9$ that $\log_{9} x = \frac{\log_{3} x}{\log_{2} 9}$. $2 \log_3 x + 4 \log_3 y = 9$ $\log_{3}9 = \log_{3}(3^{2})$ $= 2 \log_{3} 3 = 2 \times 1 = 2$ $\frac{4 \log_{3} x}{\log_{3} 9} = \frac{4 \log_{3} x}{2} = 2 \log_{3} x$ $6 \log_3 x + 6 \log_{27} y = 7$ Change the base of the logarithm, use $\log_{a} x = \frac{\log_{b} x}{\log_{a} a}$, so $6 \log_{3} x + \frac{6 \log_{3} y}{\log_{3} 27} = 7$ that $\log_{27} y = \frac{\log_{3} y}{\log_{3} 27}$ $6 \log_3 x + 2 \log_3 y = 7$ $\log_{3}27 = \log_{3}(3^{3})$ $= 3 \log_{3} 3$ $= 3 \times 1 = 3$ so $\frac{6 \log_3 y}{\log_3 27} = \frac{6 \log_3 y}{3}$ $= 2 \log_3 y$ Solve ① & ② simultaneously. Let $\log_3 x = X$ and $\log_3 y = Y$ 2X + 4Y = 9so 6X + 2Y = 7Multiply ① throughout by 3 6X + 12Y = 27-6X + 2Y = 710Y = 20Y = 2

Sub Y = 2 into 2X + 4Y = 9

2X + 4(2) = 92X + 8 = 92X = 1 $=\frac{1}{2}$ Х Check sub X = $\frac{1}{2}$ and Y = 2 into 6x + 2y = 7 $6\left(\frac{1}{2}\right) + 2(2)$ $= 3 + 4 = 7 \checkmark \checkmark (correct)$ $(X =) \log_{3} x = \frac{1}{2}$ so i.e. $x = 3^{1/2}$ $\log_a n = x$ means $a^x = n$, so $\log_3 x = \frac{1}{2}$ means $x = 3^{1/2}$. and (Y =) $\log_{3} y = 2$ i.e. $y = 3^2 = 9$ $\log_a n = x$ means $a^x = n$, so $\log_3 y = 2$ means $y = 3^2$ $(x, y) = (3^{1/2}, 9)$ so

Algebra and functions Exercise A, Question 30

Question:

The line y = 5x - 13 meets the circle $(x - 2)^2 + (y + 3)^2 = 26$ at the points A and B.

(a) Find the coordinates of the points A and B.

M is the midpoint of the line AB.

(b) Find the equation of the line which passes through M and is perpendicular to the line AB. Write your answer in the form ax + by + c = 0, where a, b and c are integers.

Solution:

2

(a)

$$y = 5x - 13$$

 $(x - 2)^{2} + (y + 3)^{2} = 26$
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 2)^{2} + (y + 3)^{2} = 26$.
 $(x - 3) + (y + 3)^{2} = 26$.
 $(x - 3) + (y + 3)^{2} = 26$.
 $(x - 3) + (y + 3)^{2} = 26$.
 $(x - 3) + (y + 3)^{2} = 26$.
 $(x - 3) + (y + 3)^{2} = 26$.
When $x = 1$, $y = 5(1) - 13$ Find the Corresponding y coordinates. Substitute $x = 1$ into
 $= 5 - 13$ $y = 5x - 13$.
 $= -8$
When $x = 3$, $y = 5(3) - 13$ Substitute $x = 3$ into $y = 5x - 13$
 $= 15 - 13$
 $= 2$.
So the coordinates of the points of
intersection are $(1, -8)$ and
 $(3, 2)$.
(b)
The Midpoint of AB is $(\frac{1+3}{2})$, Use $(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2})$ with $(x_{1}, y_{1}) = (1, -8)$.
 $\frac{-8+2}{2} = (2, -3)$.
and $(x_{2}, y_{2}) = (3, 2)$.

The gradient of the line perpendicular to y = 5x - 13 is $-\frac{1}{5}$ so, $y + 3 = \frac{-1}{5}$ (x - 2) 5y + 15 = -1 (x - 2) 5y + 15 = -x + 2x + 5y + 13 = 0The gradient of the line perpendicular to y = mx + c is $-\frac{1}{m}$. Here m = 5. Use $y - y_1 = m(x - x_1)$ with $m = \frac{-1}{5}$ and $(x_1, y_1) = (2, -3)$ Clear the fraction. Multiply each side by 5.

Algebra and functions Exercise A, Question 31

Question:

The circle *C* has equation $x^2 + y^2 - 10x + 4y + 20 = 0$. Find the length of the tangent to *C* from the point (-4, 4).

Solution:

The angle between a tangent and a radius is a right-angle, so form a right-angled triangle with the tangent, the radius and the distance between the centre of the circle and the point (-4, 4).

 $x^{2} + y^{2} - 10x + 4y + 20 = 0$ $(x - 5)^{2} - 25 + (y + 2)^{2} - 4 = -20$ $(x - 5)^{2} + (y + 2)^{2} = 9$ So circle has centre (5, -2) and radius 3 $\sqrt{(5 - 4)^{2} + (-2 - 4)^{2}}$ $= \sqrt{81 + 36} = \sqrt{117}$ Therefore $117 = 3^{2} + x^{2}$ $x^{2} = 108$ $x = \sqrt{108}$

•

© Pearson Education Ltd 2008

Find the equation of the tangent in the form $(x - a)^{2} + (y - b)^{2} = r^{2}$

Calculate the distance between the centre of the circle and (-4, 4)Using Pythagoras