Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise A, Question 1

Question:

Convert the following angles in radians to degrees:

- (a) $\frac{\pi}{20}$
- (b) $\frac{\pi}{15}$
- (c) $\frac{5\pi}{12}$
- (d) $\frac{\pi}{2}$
- (e) $\frac{7\pi}{9}$
- (f) $\frac{7\pi}{6}$
- $(g) \frac{5\pi}{4}$
- (h) $\frac{3\pi}{2}$
- (i) 3π

(a)
$$\frac{\pi}{20}$$
 rad = $\frac{180^{\circ}}{20}$ = 9 °

(b)
$$\frac{\pi}{15}$$
 rad = $\frac{180^{\circ}}{15}$ = 12 °

(c)
$$\frac{5\pi}{12}$$
 rad = $\frac{15^{\circ}}{12}$ = 75 °

(d)
$$\frac{\pi}{2}$$
 rad = $\frac{180^{\circ}}{2}$ = 90 °

(e)
$$\frac{7\pi}{9}$$
 rad = $\frac{20^{\circ}}{9}$ = 140 °

(f)
$$\frac{7\pi}{6}$$
 rad = $\frac{30^{\circ}}{180^{\circ}}$ = 210 °

(g)
$$\frac{5\pi}{4}$$
 rad = $\frac{45^{\circ}}{5 \times 180^{\circ}}$ = 225 °

(h)
$$\frac{3\pi}{2}$$
 rad = 3 × 90 ° = 270 °

(i)
$$3\pi \text{ rad} = 3 \times 180^{\circ} = 540^{\circ}$$

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise A, Question 2

Question:

Use your calculator to convert the following angles to degrees, giving your answer to the nearest 0.1° :

- (a) 0.46^{c}
- (b) 1^c
- (c) 1.135^{c}
- (d) $\sqrt{3^c}$
- (e) 2.5^{c}
- (f) 3.14^{c}
- $(g) 3.49^{c}$

```
(a) 0.46^{c} = 26.356 ... ° = 26.4 ° (nearest 0.1 °)
```

(b)
$$1^{\circ} = 57.295$$
 ... $\circ = 57.3 \circ (\text{nearest } 0.1 \circ)$

(c)
$$1.135^{c} = 65.030$$
 ... ° = 65.0 ° (nearest 0.1 °)

(d)
$$\sqrt{3^c} = 99.239$$
 ... ° = 99.2 ° (nearest 0.1 °)

(e) 2.5° = 143.239
$$\,$$
 ... $\,$ ° = 143.2 ° (nearest 0.1 °)

(f)
$$3.14^c = 179.908$$
 ... ° = 179.9 ° (nearest 0.1 °)

(g)
$$3.49^{c} = 199.96$$
 ... ° = 200.0 ° (nearest 0.1 °)

[©] Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise A, Question 3

Question:

Use your calculator to write down the value, to 3 significant figures, of the following trigonometric functions.

- (a) sin 0.5^c
- (b) $\cos \sqrt{2^c}$
- (c) tan 1.05^c
- (d) sin 2^c
- (e) $\cos 3.6^{\circ}$

- (a) $\sin 0.5^{\circ} = 0.47942$... = 0.479 (3 s.f.)
- (b) $\cos \sqrt{2^c} = 0.1559$... = 0.156 (3 s.f.)
- (c) $\tan 1.05^{c} = 1.7433$... = 1.74 (3 s.f.)
- (d) $\sin 2^{c} = 0.90929$... = 0.909 (3 s.f.)
- (e) $\cos 3.6^{\circ} = -0.8967$... = -0.897 (3 s.f.)
- © Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise A, Question 4

Question:

Convert the following angles to radians, giving your answers as multiples of π .

- (a) 8°
- (b) 10°
- (c) 22.5°
- (d) 30°
- (e) 45°
- (f) 60°
- (g) 75°
- (h) 80°
- (i) 112.5°
- (j) 120°
- (k) 135°
- (1) 200°
- (m) 240°
- (n) 270°
- (o) 315°
- (p) 330°

(a)
$$8^{\circ} = \frac{\overset{2}{8} \times \frac{\pi}{180} \text{ rad}}{45} = \frac{2\pi}{45} \text{ rad}$$

(b)
$$10^{\circ} = 10 \times \frac{\pi}{180} \text{ rad} = \frac{\pi}{18} \text{ rad}$$

(c) 22.5 ° =
$$\frac{22.5 \times \frac{\pi}{180} \text{ rad}}{8} = \frac{\pi}{8} \text{ rad}$$

(d) 30 ° = 30 ×
$$\frac{\pi}{180}$$
 rad = $\frac{\pi}{6}$ rad

(e) 45 ° = 45 ×
$$\frac{\pi}{180}$$
 rad = $\frac{\pi}{4}$ rad

(f) 60 ° = 2 × answer to (d) =
$$\frac{\pi}{3}$$
 rad

(g) 75 ° =
$$\frac{75}{180} \times \frac{\pi}{180}$$
 rad = $\frac{5\pi}{12}$ rad

(h) 80 ° =
$$\frac{80 \times \pi}{180}$$
 rad = $\frac{4\pi}{9}$ rad

(i) 112.5 ° = 5 × answer to (c) =
$$\frac{5\pi}{8}$$
 rad

(j) 120 ° = 2 × answer to (f) =
$$\frac{2\pi}{3}$$
 rad

(k) 135 ° = 3 × answer to (e) =
$$\frac{3\pi}{4}$$
 rad

(1) 200 ° =
$$\frac{200 \times \pi}{180}$$
 rad = $\frac{10\pi}{9}$ rad

(m) 240 ° = 2 × answer to (j) =
$$\frac{4\pi}{3}$$
 rad

(n) 270 ° = 3 × 90 ° =
$$\frac{3\pi}{2}$$
 rad

(o) 315 ° = 180 ° + 135 ° =
$$\pi$$
 + $\frac{3\pi}{4}$ = $\frac{7\pi}{4}$ rad

(p) 330 ° = 11 × 30 ° =
$$\frac{11\pi}{6}$$
 rad

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise A, Question 5

Question:

Use your calculator to convert the following angles to radians, giving your answers to 3 significant figures:

- (a) 50°
- (b) 75°
- (c) 100°
- (d) 160°
- (e) 230°
- (f) 320°

Solution:

(a)
$$50^{\circ} = 0.8726$$
 ... $^{\circ} = 0.873^{\circ} (3 \text{ s.f.})$

(b)
$$75^{\circ} = 1.3089$$
 ... $^{\circ} = 1.31^{\circ} (3 \text{ s.f.})$

(c)
$$100^{\circ} = 1.7453$$
 ... $^{\circ} = 1.75^{\circ} (3 \text{ s.f.})$

(d)
$$160^{\circ} = 2.7925$$
 ... $^{c} = 2.79^{c} (3 \text{ s.f.})$

(e)
$$230^{\circ} = 4.01425$$
 ... $^{\circ} = 4.01^{\circ} (3 \text{ s.f.})$

(f)
$$320^{\circ} = 5.585$$
 ... $^{\circ} = 5.59^{\circ} (3 \text{ s.f.})$

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise B, Question 1

Question:

An arc AB of a circle, centre O and radius r cm, subtends an angle θ radians at O. The length of AB is l cm.

- (a) Find l when
- (i) r = 6, $\theta = 0.45$
- (ii) r = 4.5, $\theta = 0.45$
- (iii) $r = 20, \theta = \frac{3}{8}\pi$
- (b) Find r when
- (i) l = 10, $\theta = 0.6$ (ii) l = 1.26, $\theta = 0.7$
- (iii) $l = 1.5\pi$, $\theta = \frac{5}{12}\pi$
- (c) Find θ when
- (i) l = 10, r = 7.5
- (ii) l = 4.5, r = 5.625(iii) $l = \sqrt{12}, r = \sqrt{3}$

Solution:

- (a) Using $l = r\theta$
- (i) $l = 6 \times 0.45 = 2.7$
- (ii) $l = 4.5 \times 0.45 = 2.025$

(iii)
$$l = 20 \times \frac{3}{8}\pi = 7.5\pi$$
 (23.6 3 s.f.)

- (b) Using $r = \frac{l}{\theta}$
- (i) $r = \frac{10}{0.6} = 16 \frac{2}{3}$
- (ii) $r = \frac{1.26}{0.7} = 1.8$

(iii)
$$r = \frac{1.5\pi}{\frac{5}{12}\pi} = 1.5 \times \frac{12}{5} = \frac{18}{5} = 3\frac{3}{5}$$

- (c) Using $\theta = \frac{l}{r}$
- (i) $\theta = \frac{10}{7.5} = 1 \frac{1}{3}$
- (ii) $\theta = \frac{4.5}{5.625} = 0.8$
- (iii) $\theta = \frac{\sqrt{12}}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3}} = 2$

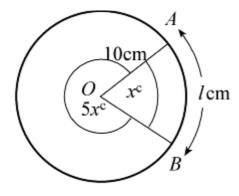
Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise B, Question 2

Question:

A minor arc AB of a circle, centre O and radius 10 cm, subtends an angle x at O. The major arc AB subtends an angle 5x at O. Find, in terms of π , the length of the minor arc AB.

Solution:



The total angle at the centre is $6x^c$ so

$$6x = 2\pi$$

$$x = \frac{\pi}{3}$$

Using $l = r\theta$ to find minor arc AB

$$l = 10 \times \frac{\pi}{3} = \frac{10\pi}{3} \text{ cm}$$

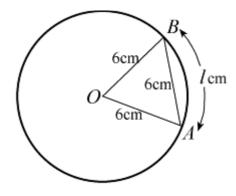
Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise B, Question 3

Question:

An arc AB of a circle, centre O and radius 6 cm, has length l cm. Given that the chord AB has length 6 cm, find the value of l, giving your answer in terms of π .

Solution:



 \triangle OAB is equilateral, so \angle AOB = $\frac{\pi}{3}$ rad.

Using $l = r\theta$

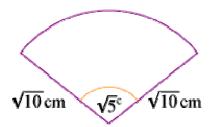
$$l = 6 \times \frac{\pi}{3} = 2\pi$$

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise B, Question 4

Question:

The sector of a circle of radius $\sqrt{10}$ cm contains an angle of $\sqrt{5}$ radians, as shown in the diagram. Find the length of the arc, giving your answer in the form $p\sqrt{q}$ cm, where p and q are integers.



Solution:



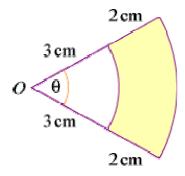
Using $l = r\theta$ with $r = \sqrt{10}$ cm and $\theta = \sqrt{5}^{c}$ $l = \sqrt{10} \times \sqrt{5} = \sqrt{50} = \sqrt{25 \times 2} = 5 \sqrt{2}$ cm

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise B, Question 5

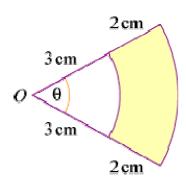
Question:

Referring to the diagram, find:



- (a) The perimeter of the shaded region when $\theta = 0.8$ radians.
- (b) The value of θ when the perimeter of the shaded region is 14 cm.

Solution:



(a) Using $l = r\theta$,

the smaller arc = $3 \times 0.8 = 2.4$ cm

the larger arc = $(3+2) \times 0.8 = 4$ cm

Perimeter = 2.4 cm + 2 cm + 4 cm + 2 cm = 10.4 cm

(b) The smaller arc = 3θ cm, the larger arc = 5θ cm.

So perimeter = $(3\theta + 5\theta + 2 + 2)$ cm.

As perimeter is 14 cm,

 $8\theta + 4 = 14$

 $8\theta = 10$

 $\theta = \frac{10}{8} = 1 \frac{1}{4}$

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise B, Question 6

Question:

A sector of a circle of radius r cm contains an angle of 1.2 radians. Given that the sector has the same perimeter as a square of area 36 cm², find the value of r.

Solution:

Using $l = r\theta$, the arc length = 1.2r cm.

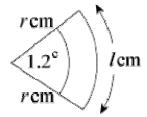
The area of the square $= 36 \text{ cm}^2$, so each side = 6 cm and the perimeter is, therefore, 24 cm.

The perimeter of the sector = arc length +2r cm = (1.2r + 2r) cm = 3.2r cm.

The perimeter of square = perimeter of sector so

$$24 = 3.2r$$

$$r = \frac{24}{3.2} = 7.5$$



Edexcel Modular Mathematics for AS and A-Level

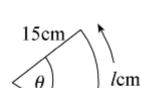
Radian measure and its applications Exercise B, Question 7

Question:

A sector of a circle of radius 15 cm contains an angle of θ radians. Given that the perimeter of the sector is 42 cm, find the value of θ .

Solution:

Using $l=r\theta$, the arc length of the sector $=15\theta$ cm. So the perimeter $=(15\theta+30)$ cm. As the perimeter =42 cm $15\theta+30=42$ $\Rightarrow 15\theta=12$ $\Rightarrow \theta=\frac{12}{15}=\frac{4}{5}$



© Pearson Education Ltd 2008

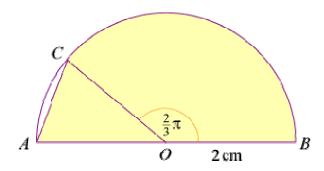
15cm

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise B, Question 8

Question:

In the diagram AB is the diameter of a circle, centre O and radius 2 cm. The point C is on the circumference such that \angle COB = $\frac{2}{3}\pi$ radians.

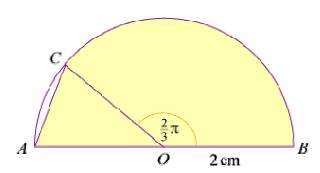


(a) State the value, in radians, of \angle COA.

The shaded region enclosed by the chord AC, arc CB and AB is the template for a brooch.

(b) Find the exact value of the perimeter of the brooch.

Solution:



(a)
$$\angle COA = \pi - \frac{2}{3}\pi = \frac{\pi}{3}$$
 rad

(b) The perimeter of the brooch = AB + arc BC + chord AC.

$$AB = 4$$
 cm

arc BC =
$$r\theta$$
 with $r = 2$ cm and $\theta = \frac{2}{3}\pi$ so

arc BC =
$$2 \times \frac{2}{3}\pi = \frac{4}{3}\pi$$
 cm

As
$$\angle$$
 COA = $\frac{\pi}{3}$ (60 °), \triangle COA is equilateral, so

chord AC = 2 cm

The perimeter = 4 cm +
$$\frac{4}{3}\pi$$
 cm + 2 cm = $\left(6 + \frac{4}{3}\pi\right)$ cm

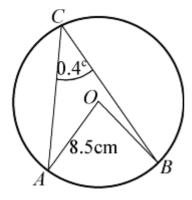
Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise B, Question 9

Question:

The points A and B lie on the circumference of a circle with centre O and radius 8.5 cm. The point C lies on the major arc AB. Given that \angle ACB = 0.4 radians, calculate the length of the minor arc AB.

Solution:



Using the circle theorem:

Angle subtended at the centre of the circle $= 2 \times$ angle subtended at the circumference

$$\angle$$
 AOB = 2 \angle ACB = 0.8°

Using $l = r\theta$

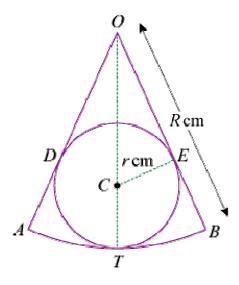
length of minor arc $AB = 8.5 \times 0.8$ cm = 6.8 cm

Edexcel Modular Mathematics for AS and A-Level

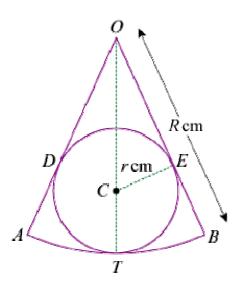
Radian measure and its applications Exercise B, Question 10

Question:

In the diagram OAB is a sector of a circle, centre O and radius R cm, and \angle AOB = 2θ radians. A circle, centre C and radius R cm, touches the arc AB at T, and touches OA and OB at D and E respectively, as shown.



- (a) Write down, in terms of R and r, the length of OC.
- (b) Using \triangle OCE, show that $R\sin \theta = r(1 + \sin \theta)$.
- (c) Given that $\sin \theta = \frac{3}{4}$ and that the perimeter of the sector *OAB* is 21 cm, find r, giving your answer to 3 significant figures.



(a)
$$OC = OT - CT = R \text{ cm} - r \text{ cm} = (R - r) \text{ cm}$$

(b) In
$$\triangle$$
 OCE, \angle CEO = 90 $^{\circ}$ (radius perpendicular to tangent) and \angle COE = θ (OT bisects \angle AOB)

Using sin
$$\angle COE = \frac{CE}{OC}$$

$$\sin \theta = \frac{r}{R-r}$$

$$(R-r)$$
 $\sin \theta = r$

$$(R-r)$$
 $\sin \theta = r$
 $R \sin \theta - r \sin \theta = r$

$$R \sin \theta = r + r \sin \theta$$

$$R \sin \theta = r (1 + \sin \theta)$$

(c) As
$$\sin \theta = \frac{3}{4}, \frac{3}{4}R = \frac{7}{4}r \implies R = \frac{7}{3}r$$

and
$$\theta = \sin^{-1} \frac{3}{4} = 0.84806$$
 ... c

The perimeter of the sector =
$$2R + 2R\theta = 2R$$
 $\left(1 + \theta\right) = \frac{14}{3}r \left(1.84806 \dots\right)$

So
$$21 = \frac{14}{3}r \left(1.84806 \dots \right)$$

$$\Rightarrow r = \frac{21 \times 3}{14 (1.84806 \dots)} = \frac{9}{2 (1.84806 \dots)} = 2.43 (3 \text{ s.f.})$$

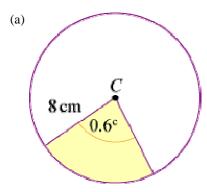
Edexcel Modular Mathematics for AS and A-Level

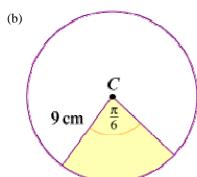
Radian measure and its applications Exercise C, Question 1

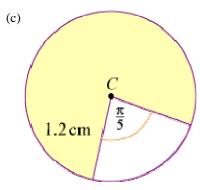
Question:

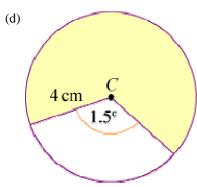
(*Note:* give non-exact answers to 3 significant figures.)

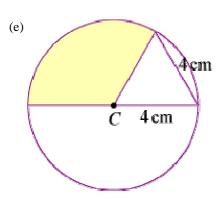
Find the area of the shaded sector in each of the following circles with centre C. Leave your answer in terms of π , where appropriate.

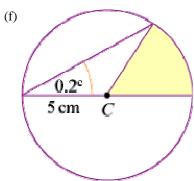




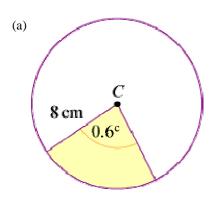




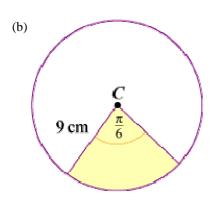




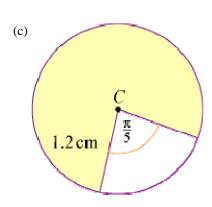
Solution:



Area of shaded sector $= \frac{1}{2} \times 8^2 \times 0.6 = 19.2 \text{ cm}^2$

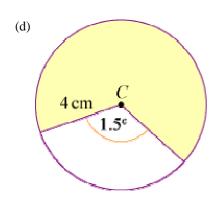


Area of shaded sector = $\frac{1}{2} \times 9^2 \times \frac{\pi}{6} = \frac{27\pi}{4}$ cm² $= 6.75\pi$ cm²



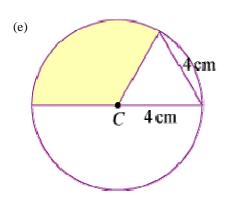
Angle subtended at C by major arc $= 2\pi - \frac{\pi}{5} = \frac{9\pi}{5}$ rad

Area of shaded sector $= \frac{1}{2} \times 1.2^2 \times \frac{9\pi}{5} = 1.296\pi \text{ cm}^2$



Angle subtended at C by major arc = $(2\pi - 1.5)$ rad

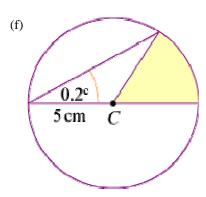
Area of shaded sector $=\frac{1}{2} \times 4^2 \times \left(2\pi - 1.5\right) = 38.3 \text{ cm}^2 (3 \text{ s.f.})$



The triangle is equilateral so angle at C in the triangle is $\frac{\pi}{3}$ rad.

Angle subtended at C by shaded sector $= \pi - \frac{\pi}{3} \text{ rad} = \frac{2\pi}{3} \text{ rad}$

Area of shaded sector $= \frac{1}{2} \times 4^2 \times \frac{2\pi}{3} = \frac{16}{3}\pi \text{ cm}^2$



As triangle is isosceles, angle at ${\it C}$ in shaded sector is $0.4^{\rm c}$.

Area of shaded sector = $\frac{1}{2} \times 5^2 \times 0.4 = 5$ cm²

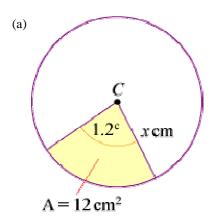
Edexcel Modular Mathematics for AS and A-Level

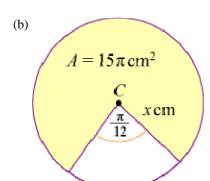
Radian measure and its applications Exercise C, Question 2

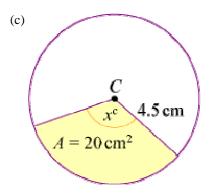
Question:

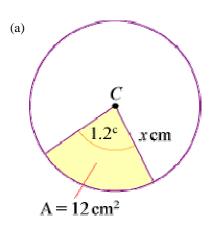
(*Note:* give non-exact answers to 3 significant figures.)

For the following circles with centre C, the area A of the shaded sector is given. Find the value of x in each case.







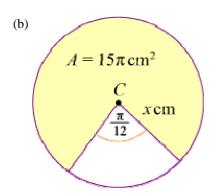


Area of shaded sector = $\frac{1}{2} \times x^2 \times 1.2 = 0.6x^2$ cm²

So
$$0.6x^2 = 12$$

$$\Rightarrow x^2 = 20$$

$$\Rightarrow x = 4.47 (3 \text{ s.f.})$$

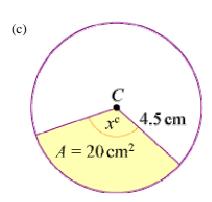


Area of shaded sector $=\frac{1}{2} \times x^2 \times \left(2\pi - \frac{\pi}{12}\right) = \frac{1}{2}x^2 \times \frac{23\pi}{12} \text{ cm}^2$

So
$$15\pi = \frac{23}{24}\pi x^2$$

$$\Rightarrow x^2 = \frac{24 \times 15}{23}$$

$$\Rightarrow x = 3.96 (3 \text{ s.f.})$$



Area of shaded sector $= \frac{1}{2} \times 4.5^2 \times x \text{ cm}^2$

So
$$20 = \frac{1}{2} \times 4.5^2 x$$

$$\Rightarrow$$
 $x = \frac{40}{4.5^2} = 1.98 \text{ (3 s.f.)}$

Edexcel Modular Mathematics for AS and A-Level

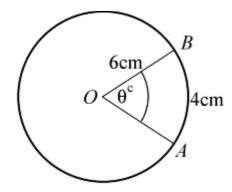
Radian measure and its applications Exercise C, Question 3

Question:

(*Note:* give non-exact answers to 3 significant figures.)

The arc AB of a circle, centre O and radius 6 cm, has length 4 cm. Find the area of the minor sector AOB.

Solution:



Using
$$l = r\theta$$

$$4 = 6\theta$$

$$\theta = \frac{2}{3}$$

So area of sector $= \frac{1}{2} \times 6^2 \times \frac{2}{3} = 12 \text{ cm}^2$

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise C, Question 4

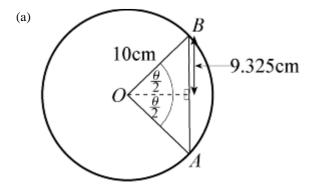
Question:

(Note: give non-exact answers to 3 significant figures.)

The chord AB of a circle, centre O and radius 10 cm, has length 18.65 cm and subtends an angle of θ radians at O.

- (a) Show that $\theta = 2.40$ (to 3 significant figures).
- (b) Find the area of the minor sector *AOB*.

Solution:



Using the line of symmetry in the isosceles triangle *OAB*

$$\sin \frac{\theta}{2} = \frac{9.325}{10}$$

$$\frac{\theta}{2} = \sin^{-1} \left(\frac{9.325}{10} \right)$$
 (Use radian mode)

$$\theta = 2 \sin^{-1} \left(\frac{9.325}{10} \right) = 2.4025 \dots = 2.40 (3 \text{ s.f.})$$

- (b) Area of minor sector $AOB = \frac{1}{2} \times 10^2 \times \theta = 120 \text{ cm}^2 \text{ (3 s.f.)}$
- © Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise C, Question 5

Question:

(*Note:* give non-exact answers to 3 significant figures.)

The area of a sector of a circle of radius 12 cm is 100 cm². Find the perimeter of the sector.

Solution:

Using area of sector $=\frac{1}{2}r^2\theta$

$$100 = \frac{1}{2} \times 12^2 \theta$$

$$\Rightarrow \quad \theta = \frac{100}{72} = \frac{25}{18}c$$

The perimeter of the sector = $12 + 12 + 12\theta = 12$ $\left(2 + \theta\right) = 12 \times \frac{61}{18} = \frac{122}{3} = 40 \frac{2}{3}$ cm

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise C, Question 6

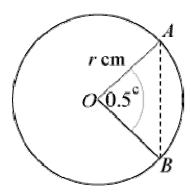
Question:

(Note: give non-exact answers to 3 significant figures.)

The arc AB of a circle, centre O and radius r cm, is such that \angle AOB = 0.5 radians. Given that the perimeter of the minor sector AOB is 30 cm:

- (a) Calculate the value of r.
- (b) Show that the area of the minor sector AOB is 36 cm^2 .
- (c) Calculate the area of the segment enclosed by the chord AB and the minor arc AB.

Solution:



(a) The perimeter of minor sector AOB = r + r + 0.5r = 2.5r cm So 30 = 2.5r

$$\Rightarrow \quad r = \frac{30}{2.5} = 12$$

- (b) Area of minor sector $= \frac{1}{2} \times r^2 \times \theta = \frac{1}{2} \times 12^2 \times 0.5 = 36$ cm²
- (c) Area of segment

$$= \frac{1}{2}r^{2} \left(\theta - \sin \theta \right)$$

$$= \frac{1}{2} \times 12^{2} \left(0.5 - \sin 0.5 \right)$$

$$= 72 (0.5 - \sin 0.5)$$

$$= 1.48 \text{ cm}^{2} (3 \text{ s.f.})$$

Edexcel Modular Mathematics for AS and A-Level

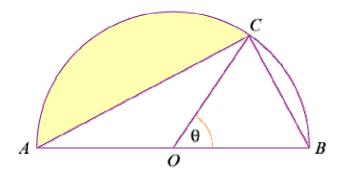
Radian measure and its applications

Exercise C, Question 7

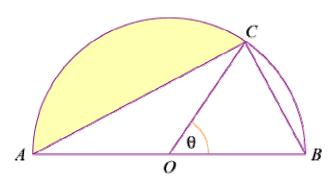
Question:

(Note: give non-exact answers to 3 significant figures.)

In the diagram, AB is the diameter of a circle of radius r cm and \angle BOC = θ radians. Given that the area of \triangle COB is equal to that of the shaded segment, show that $\theta + 2 \sin \theta = \pi$.



Solution:



Using the formula

area of a triangle =
$$\frac{1}{2}$$
ab sin C

area of
$$\triangle COB = \frac{1}{2}r^2 \sin \theta$$

$$\angle$$
 AOC = $(\pi - \theta)$ rad

Area of shaded segment
$$=\frac{1}{2}r^2\left[\left(\pi-\theta\right)-\sin\left(\pi-\theta\right)\right]$$

As ① and ② are equal

$$\frac{1}{2}r^2 \sin \theta = \frac{1}{2}r^2 \left[\pi - \theta - \sin \left(\pi - \theta \right) \right]$$

$$\sin \theta = \pi - \theta - \sin (\pi - \theta)$$

and as $\sin (\pi - \theta) = \sin \theta$

$$\sin \theta = \pi - \theta - \sin \theta$$

So
$$\theta + 2 \sin \theta = \pi$$

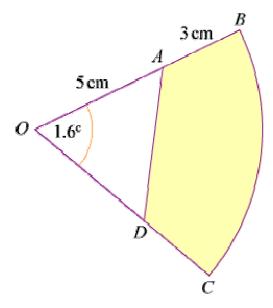
Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise C, Question 8

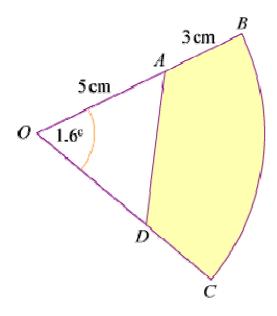
Question:

(*Note:* give non-exact answers to 3 significant figures.)

In the diagram, BC is the arc of a circle, centre O and radius 8 cm. The points A and D are such that OA = OD = 5 cm. Given that $\angle BOC = 1.6$ radians, calculate the area of the shaded region.



Solution:



Area of sector OBC = $\frac{1}{2}r^2\theta$ with r = 8 cm and $\theta = 1.6^{\circ}$

Area of sector OBC = $\frac{1}{2} \times 8^2 \times 1.6 = 51.2$ cm²

Using area of triangle formula

Area of $\triangle OAD = \frac{1}{2} \times 5 \times 5 \times \text{ sin } 1.6^c = 12.495 \text{ cm}^2$

Area of shaded region = 51.2 - 12.495 = 38.7 cm² (3 s.f.)

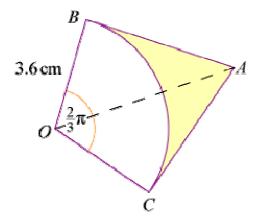
Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise C, Question 9

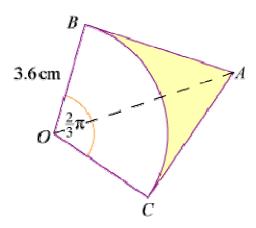
Question:

(Note: give non-exact answers to 3 significant figures.)

In the diagram, AB and AC are tangents to a circle, centre O and radius 3.6 cm. Calculate the area of the shaded region, given that $\angle BOC = \frac{2}{3}\pi$ radians.



Solution:



In right-angled $\triangle OBA$: tan $\frac{\pi}{3} = \frac{AB}{3.6}$

$$\Rightarrow$$
 AB = 3.6 tan $\frac{\pi}{3}$

Area of
$$\triangle OBA = \frac{1}{2} \times 3.6 \times 3.6 \times \tan \frac{\pi}{3}$$

So area of quadrilateral OBAC = $3.6^2 \times \tan \frac{\pi}{3} = 22.447$... cm²

Area of sector =
$$\frac{1}{2} \times 3.6^2 \times \frac{2}{3}\pi = 13.57$$
 ... cm²

Area of shaded region

= area of quadrilateral OBAC - area of sector OBC = 8.88 cm² (3 s.f.)

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise C, Question 10

Question:

(Note: give non-exact answers to 3 significant figures.)

A chord AB subtends an angle of θ radians at the centre O of a circle of radius 6.5 cm. Find the area of the segment enclosed by the chord AB and the minor arc AB, when:

(a)
$$\theta = 0.8$$

(b)
$$\theta = \frac{2}{3}\pi$$

(c)
$$\theta = \frac{4}{3}\pi$$

Solution:

(a) Area of sector OAB =
$$\frac{1}{2} \times 6.5^2 \times 0.8$$

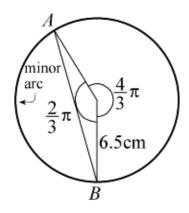
Area of
$$\triangle OAB = \frac{1}{2} \times 6.5^2 \times \sin 0.8$$

Area of segment
$$= \frac{1}{2} \times 6.5^2 \times 0.8 - \frac{1}{2} \times 6.5^2 \times \sin 0.8 = 1.75 \text{ cm}^2 \text{ (3 s.f.)}$$

(b) Area of segment
$$=\frac{1}{2} \times 6.5^2 \left(\frac{2}{3}\pi - \sin \frac{2}{3}\pi\right) = 25.9 \text{ cm}^2 (3 \text{ s.f.})$$

(c) Area of segment =
$$\frac{1}{2} \times 6.5^2 \left(\frac{2}{3}\pi - \sin \frac{2}{3}\pi \right) = 25.9 \text{ cm}^2 (3 \text{ s.f.})$$

Diagram shows why $\frac{2}{3}\pi$ is required.



Edexcel Modular Mathematics for AS and A-Level

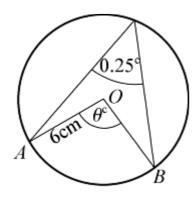
Radian measure and its applications Exercise C, Question 11

Question:

(Note: give non-exact answers to 3 significant figures.)

An arc AB subtends an angle of 0.25 radians at the *circumference* of a circle, centre O and radius 6 cm. Calculate the area of the minor sector OAB.

Solution:



Using the circle theorem: angle at the centre $= 2 \times$ angle at circumference $\angle AOB = 0.5^c$

Area of minor sector AOB = $\frac{1}{2} \times 6^2 \times 0.5 = 9$ cm²

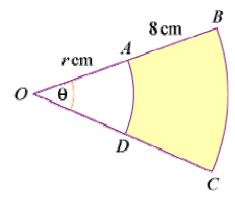
Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise C, Question 12

Question:

(Note: give non-exact answers to 3 significant figures.)

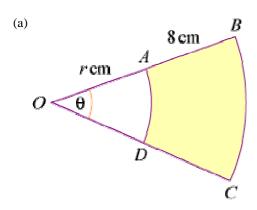
In the diagram, AD and BC are arcs of circles with centre O, such that OA = OD = r cm, AB = DC = 8 cm and $\angle BOC = \theta$ radians.



(a) Given that the area of the shaded region is 48 cm², show that $r = \frac{6}{\theta} - 4$.

(b) Given also that $r = 10\theta$, calculate the perimeter of the shaded region.

Solution:



Area of larger sector = $\frac{1}{2}$ (r + 8) $^2\theta$ cm²

Area of smaller sector $=\frac{1}{2}r^2\theta$ cm²

Area of shaded region

$$= \frac{1}{2} (r+8)^{2} \theta - \frac{1}{2} r^{2} \theta \text{ cm}^{2}$$

$$= \frac{1}{2}\theta \left[\left(r^2 + 16r + 64 \right) - r^2 \right] \text{ cm}^2$$

$$= \frac{1}{2}\theta \left(16r + 64 \right) \text{ cm}^2$$

$$= 8\theta (r+4) \text{ cm}^2$$
So $48 = 8\theta (r+4)$

$$\Rightarrow 6 = r\theta + 4\theta \quad *$$

$$\Rightarrow r\theta = 6 - 4\theta$$

$$\Rightarrow r = \frac{6}{\theta} - 4$$

(b) As
$$r = 10\theta$$
, using * $10\theta^2 + 4\theta - 6 = 0$
 $5\theta^2 + 2\theta - 3 = 0$
 $(5\theta - 3)(\theta + 1) = 0$
So $\theta = \frac{3}{5}$ and $r = 10\theta = 6$

Perimeter of shaded region = $[r\theta + 8 + (r + 8)\theta + 8]$ cm So perimeter = $\frac{18}{5} + 8 + \frac{42}{5} + 8 = 28$ cm

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications

Exercise C, Question 13

Question:

(*Note:* give non-exact answers to 3 significant figures.)

A sector of a circle of radius 28 cm has perimeter P cm and area A cm². Given that A = 4P, find the value of P.

Solution:

The area of the sector $= \frac{1}{2} \times 28^2 \times \theta = 392\theta \text{ cm}^2 = A \text{ cm}^2$

The perimeter of the sector = $(28\theta + 56)$ cm = P cm

As
$$A = 4P$$

$$392\theta = 4 (28\theta + 56)$$

$$98\theta = 28\theta + 56$$

$$70\theta = 56$$

$$\theta = \frac{56}{70} = 0.8$$

$$P = 28\theta + 56 = 28 (0.8) + 56 = 78.4$$

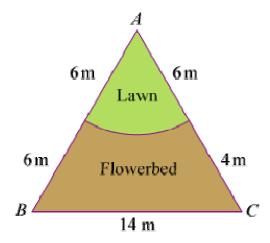
Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise C, Question 14

Question:

(Note: give non-exact answers to 3 significant figures.)

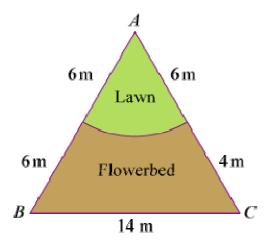
The diagram shows a triangular plot of land. The sides *AB*, *BC* and *CA* have lengths 12 m, 14 m and 10 m respectively. The lawn is a sector of a circle, centre *A* and radius 6 m.



(a) Show that $\angle BAC = 1.37$ radians, correct to 3 significant figures.

(b) Calculate the area of the flowerbed.

Solution:



(a) Using cosine rule

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\cos A = \frac{10^2 + 12^2 - 14^2}{2 \times 10 \times 12} = 0.2$$

$$A = \cos^{-1}$$
 (0.2) (use in radian mode)
 $A = 1.369$... = 1.37 (3 s.f.)

(b) Area of
$$\triangle ABC = \frac{1}{2} \times 12 \times 10 \times \sin A = 58.787 \dots m^2$$

Area of sector (lawn) =
$$\frac{1}{2} \times 6^2 \times A = 24.649$$
 ... m^2

Area of flowerbed = area of
$$\triangle ABC$$
 – area of sector = 34.1m² (3 s.f.)

Edexcel Modular Mathematics for AS and A-Level

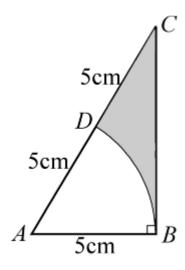
Radian measure and its applications Exercise D, Question 1

Question:

Triangle ABC is such that AB = 5 cm, AC = 10 cm and $\angle ABC = 90$ °. An arc of a circle, centre A and radius 5 cm, cuts AC at D.

- (a) State, in radians, the value of \angle BAC.
- (b) Calculate the area of the region enclosed by BC, DC and the arc BD.

Solution:



(a) In the right-angled $\triangle ABC$

$$\cos \angle BAC = \frac{5}{10} = \frac{1}{2}$$

$$\angle$$
 BAC = $\frac{\pi}{3}$

(b) Area of
$$\triangle ABC = \frac{1}{2} \times 5 \times 10 \times \sin \frac{\pi}{3} = 21.650 \dots \text{ cm}^2$$

Area of sector DAB =
$$\frac{1}{2} \times 5^2 \times \frac{\pi}{3} = 13.089$$
 ... cm²

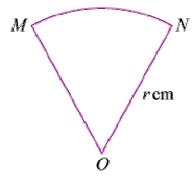
Area of shaded region = area of \triangle ABC - area of sector $DAB = 8.56 \text{ cm}^2$ (3 s.f.)

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise D, Question 2

Question:

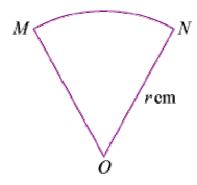
The diagram shows a minor sector OMN of a circle centre O and radius r cm. The perimeter of the sector is 100 cm and the area of the sector is A cm².



- (a) Show that $A = 50r r^2$.
- (b) Given that r varies, find:
- (i) The value of r for which A is a maximum and show that A is a maximum.
- (ii) The value of \angle MON for this maximum area.
- (iii) The maximum area of the sector OMN.

[E]

Solution:



(a) Let
$$\angle$$
MON = θ ^c

Perimeter of sector = $(2r + r\theta)$ cm

So
$$100 = 2r + r\theta$$

$$\Rightarrow r\theta = 100 - 2r$$

$$\Rightarrow \theta = \frac{100}{r} - 2 *$$

The area of the sector = $A \text{ cm}^2 = \frac{1}{2}r^2\theta \text{ cm}^2$

So
$$A = \frac{1}{2}r^2 \left(\frac{100}{r} - 2 \right)$$

$$\Rightarrow A = 50r - r^2$$

(b) (i) $A = -(r^2 - 50r) = -[(r - 25)^2 - 625] = 625 - (r - 25)^2$ The maximum value occurs when r = 25, as for all other values of r something is subtracted from 625.

(ii) Using *, when
$$r = 25$$
, $\theta = \frac{100}{25} - 2 = 2^{\circ}$

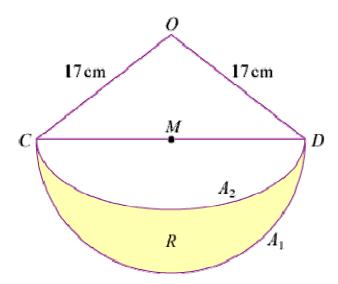
- (iii) Maximum area = 625 cm^2
- © Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise D, Question 3

Question:

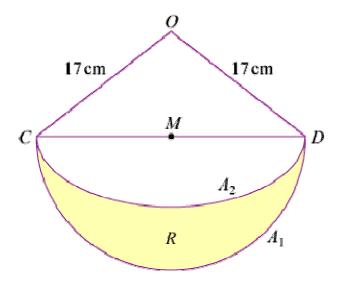
The diagram shows the triangle OCD with OC = OD = 17 cm and CD = 30 cm. The mid-point of CD is M. With centre M, a semicircular arc A_1 is drawn on CD as diameter. With centre O and radius 17 cm, a circular arc A_2 is drawn from C to D. The shaded region R is bounded by the arcs A_1 and A_2 . Calculate, giving answers to 2 decimal places:



- (a) The area of the triangle OCD.
- (b) The angle *COD* in radians.
- (c) The area of the shaded region R.

[E]

Solution:



(a) Using Pythagoras' theorem to find OM: $OM^2 = 17^2 - 15^2 = 64$

$$\Rightarrow$$
 OM = 8 cm

Area of
$$\triangle OCD = \frac{1}{2}CD \times OM = \frac{1}{2} \times 30 \times 8 = 120 \text{ cm}^2$$

(b) In
$$\triangle$$
 OCM: $\sin \angle$ COM = $\frac{15}{17}$ $\Rightarrow \angle$ COM = 1.0808 ... °
So \angle COD = 2 × \angle COM = 2.16° (2 d.p.)

(c) Area of shaded region R = area of semicircle – area of segment CDA_2

Area of segment = area of sector OCD – area of sector $\triangle OCD$

$$=\frac{1}{2} \times 17^2 \left(\angle COD - \sin \angle COD \right)$$
 (angles in radians)

=
$$192.362$$
 ... cm² (use at least 3 d.p.)

Area of semicircle =
$$\frac{1}{2} \times \pi \times 15^2 = 353.429$$
 ... cm²

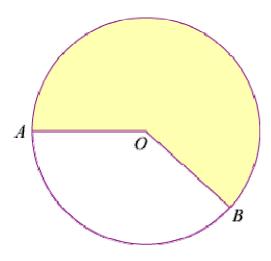
So area of shaded region
$$R = 353.429$$
 ... $- 192.362$... $= 161.07$ cm² (2 d.p.)

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise D, Question 4

Question:

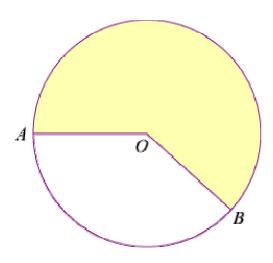
The diagram shows a circle, centre O, of radius 6 cm. The points A and B are on the circumference of the circle. The area of the shaded major sector is 80 cm². Given that \angle AOB = θ radians, where $0 < \theta < \pi$, calculate:



- (a) The value, to 3 decimal places, of θ .
- (b) The length in cm, to 2 decimal places, of the minor arc AB.

[E]

Solution:



(a) Reflex angle AOB = $(2\pi - \theta)$ rad

Area of shaded sector $= \frac{1}{2} \times 6^2 \times \left(2\pi - \theta\right) = 36\pi - 18\theta \text{ cm}^2$

So
$$80 = 36\pi - 18\theta$$

$$\Rightarrow$$
 $18\theta = 36\pi - 80$

$$\Rightarrow \theta = \frac{36\pi - 80}{18} = 1.839 \text{ (3 d.p.)}$$

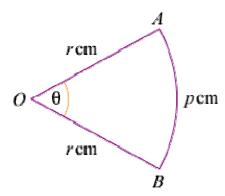
(b) Length of minor arc AB = $6\theta = 11.03$ cm (2 d.p.)

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise D, Question 5

Question:

The diagram shows a sector OAB of a circle, centre O and radius r cm. The length of the arc AB is p cm and \angle AOB is θ radians.



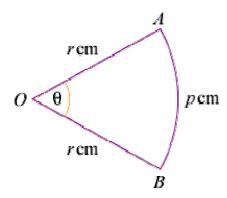
- (a) Find θ in terms of p and r.
- (b) Deduce that the area of the sector is $\frac{1}{2}$ pr cm².

Given that r = 4.7 and p = 5.3, where each has been measured to 1 decimal place, find, giving your answer to 3 decimal places:

- (c) The least possible value of the area of the sector.
- (d) The range of possible values of θ .

[E]

Solution:



(a) Using
$$l = r\theta \implies p = r\theta$$

So
$$\theta = \frac{p}{r}$$

(b) Area of sector
$$= \frac{1}{2}r^2\theta = \frac{1}{2}r^2 \times \frac{p}{r} = \frac{1}{2} \operatorname{pr} \operatorname{cm}^2$$

(c)
$$4.65 \le r < 4.75, 5.25 \le p < 5.35$$

Least value for area of sector =
$$\frac{1}{2} \times 5.25 \times 4.65 = 12.207 \text{ cm}^2 \text{ (3 d.p.)}$$

(**Note**: Lowest is 12.20625, so 12.207 should be given.)

(d) Max value of
$$\theta = \frac{\max p}{\min r} = \frac{5.35}{4.65} = 1.1505$$
 ...

So give 1.150 (3 d.p.)

Min value of
$$\theta = \frac{\min p}{\max r} = \frac{5.25}{4.75} = 1.10526$$
 ...

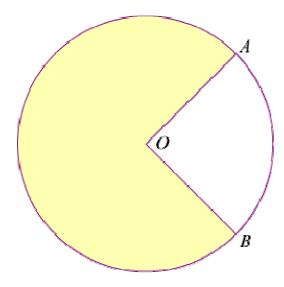
So give 1.106 (3 d.p.)

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise D, Question 6

Question:

The diagram shows a circle centre O and radius 5 cm. The length of the minor arc AB is 6.4 cm.



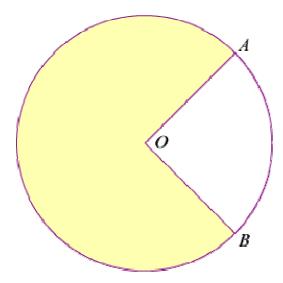
(a) Calculate, in radians, the size of the acute angle AOB.

The area of the minor sector AOB is R_1 cm² and the area of the shaded major sector AOB is R_2 cm².

- (b) Calculate the value of R_1 .
- (c) Calculate R_1 : R_2 in the form 1: p, giving the value of p to 3 significant figures.

[E]

Solution:



(a) Using
$$l = r\theta$$
, $6.4 = 5\theta$

$$\Rightarrow \quad \theta = \frac{6.4}{5} = 1.28^{\circ}$$

(b) Using area of sector
$$=\frac{1}{2}r^2\theta$$

$$R_1 = \frac{1}{2} \times 5^2 \times 1.28 = 16$$

(c)
$$R_2 = \text{ area of circle } -R_1 = \pi 5^2 - 16 = 62.5398 \dots$$

So
$$\frac{R_1}{R_2} = \frac{16}{62.5398 \dots} = \frac{1}{3.908 \dots} = \frac{1}{p}$$

$$\Rightarrow$$
 $p = 3.91 (3 \text{ s.f.})$

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise D, Question 7

Question:



The diagrams show the cross-sections of two drawer handles.

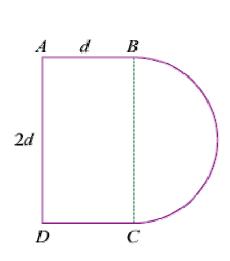
Shape *X* is a rectangle *ABCD* joined to a semicircle with *BC* as diameter. The length AB = d cm and BC = 2d cm. Shape *Y* is a sector *OPQ* of a circle with centre *O* and radius 2d cm. Angle *POQ* is θ radians. Given that the areas of shapes *X* and *Y* are equal:

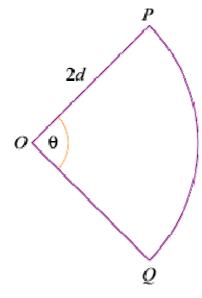
(a) Prove that $\theta = 1 + \frac{1}{4}\pi$.

Using this value of θ , and given that d = 3, find in terms of π :

- (b) The perimeter of shape X.
- (c) The perimeter of shape Y.
- (d) Hence find the difference, in mm, between the perimeters of shapes X and Y. **[E]**

Solution:





Shape X

Shape Y

= area of rectangle + area of semicircle

$$= 2d^2 + \frac{1}{2}\pi d^2 \text{ cm}^2$$

Area of shape $Y = \frac{1}{2} (2d)^2 \theta = 2d^2\theta \text{ cm}^2$

As
$$X = Y$$
: $2d^2 + \frac{1}{2}\pi d^2 = 2d^2\theta$

Divide by
$$2d^2$$
: $1 + \frac{\pi}{4} = \theta$

(b) Perimeter of X

=
$$(d + 2d + d + \pi d)$$
 cm with $d = 3$

$$= (3\pi + 12)$$
 cm

(c) Perimeter of Y

=
$$(2d + 2d + 2d\theta)$$
 cm with $d = 3$ and $\theta = 1 + \frac{\pi}{4}$

$$= 12 + 6 \left(1 + \frac{\pi}{4}\right)$$

$$= \left(18 + \frac{3\pi}{2}\right) \text{ cm}$$

$$= \left[\left(18 + \frac{3\pi}{2} \right) - \left(3\pi + 12 \right) \right] \times 10$$

$$=10\left(6-\frac{3\pi}{2}\right)$$

$$= 12.87 \dots$$

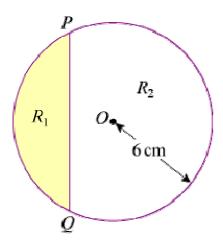
= 12.9 (3 s.f.)

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise D, Question 8

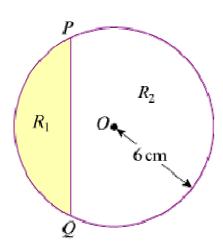
Question:

The diagram shows a circle with centre O and radius 6 cm. The chord PQ divides the circle into a minor segment R_1 of area A_1 cm² and a major segment R_2 of area A_2 cm². The chord PQ subtends an angle θ radians at O.



- (a) Show that $A_1=18$ ($\theta-\sin\theta$) . Given that $A_2=3A_1$ and f (θ) $=2\theta-2\sin\theta-\pi$:
- (b) Prove that $f(\theta) = 0$.
- (c) Evaluate f(2.3) and f(2.32) and deduce that $2.3 < \theta < 2.32$. **[E]**

Solution:



- (a) Area of segment R_1 = area of sector OPQ area of triangle OPQ
 - $\Rightarrow A_1 = \frac{1}{2} \times 6^2 \times \theta \frac{1}{2} \times 6^2 \times \sin \theta$
 - \Rightarrow $A_1 = 18 (\theta \sin \theta)$
- (b) Area of segment R_2 = area of circle area of segment R_1
 - \Rightarrow $A_2 = \pi 6^2 18 (\theta \sin \theta)$

$$\Rightarrow A_2 = 36\pi - 18\theta + 18 \sin \theta$$
As $A_2 = 3A_1$
 $36\pi - 18\theta + 18 \sin \theta = 3 (18\theta - 18 \sin \theta) = 54\theta - 54 \sin \theta$
So $72\theta - 72 \sin \theta - 36\pi = 0$

$$\Rightarrow 36 (2\theta - 2 \sin \theta - \pi) = 0$$

$$\Rightarrow 2\theta - 2 \sin \theta - \pi = 0$$
So f (θ) = 0

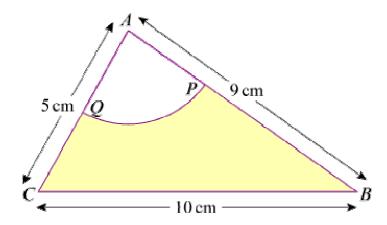
(c) f (2.3) = -0.0330 ...
f (2.32) = +0.0339 ...
As there is a change of sign θ lies between 2.3 and 2.32.

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise D, Question 9

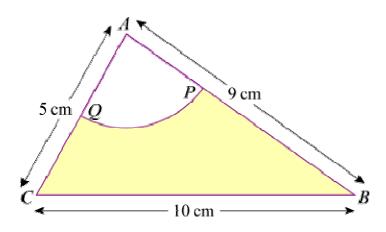
Question:

Triangle ABC has AB = 9 cm, BC = 10 cm and CA = 5 cm. A circle, centre A and radius 3 cm, intersects AB and AC at P and Q respectively, as shown in the diagram.



- (a) Show that, to 3 decimal places, \angle BAC = 1.504 radians.
- (b) Calculate:
- (i) The area, in cm^2 , of the sector APQ.
- (ii) The area, in cm², of the shaded region *BPQC*.
- (iii) The perimeter, in cm, of the shaded region BPQC. [E]

Solution:



(a) In $\triangle ABC$ using the cosine rule:

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\Rightarrow$$
 cos \angle BAC = $\frac{5^2 + 9^2 - 10^2}{2 \times 5 \times 9} = 0.06$

$$\Rightarrow$$
 \angle BAC = 1.50408 ... radians = 1.504° (3 d.p.)

- (b) (i) Using the sector area formula: area of sector $=\frac{1}{2}r^2\theta$
 - area of sector APQ = $\frac{1}{2} \times 3^2 \times 1.504 = 6.77$ cm² (3 s.f.)
- (ii) Area of shaded region BPQC
- = area of $\triangle ABC$ area of sector APQ

$$= \ \frac{1}{2} \times 5 \times 9 \times sin \ 1.504^c - \ \frac{1}{2} \times 3^2 \times 1.504 \ cm^2$$

=
$$15.681$$
 ... cm^2
= 15.7 cm^2 (3 s.f.)

$$= 15.7 \text{ cm}^2 (3 \text{ s.f.})$$

(iii) Perimeter of shaded region BPQC

$$= QC + CB + BP + arc PQ$$

$$=2+10+6+(3\times1.504)$$
 cm

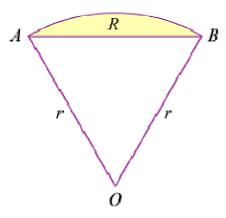
 $^{= 22.5 \}text{ cm } (3 \text{ s.f.})$

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise D, Question 10

Question:

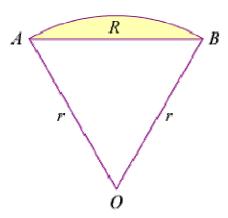
The diagram shows the sector OAB of a circle of radius r cm. The area of the sector is 15 cm^2 and $\angle AOB = 1.5$ radians.



- (a) Prove that $r = 2 \sqrt{5}$.
- (b) Find, in cm, the perimeter of the sector *OAB*. The segment *R*, shaded in the diagram, is enclosed by the arc *AB* and the straight line *AB*.
- (c) Calculate, to 3 decimal places, the area of R.

[E]

Solution:



(a) Area of sector $=\frac{1}{2}r^2\left(1.5\right)$ cm²

So
$$\frac{3}{4}r^2 = 15$$

$$\Rightarrow \quad r^2 = \frac{60}{3} = 20$$

$$\Rightarrow \quad r = \sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$$

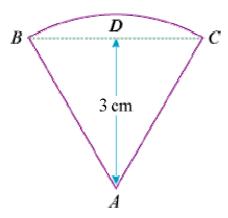
- (b) Arc length AB = r (1.5) = 3 $\sqrt{5}$ cm Perimeter of sector = AO + OB + arc AB= (2 $\sqrt{5}$ + 2 $\sqrt{5}$ + 3 $\sqrt{5}$) cm = 7 $\sqrt{5}$ cm = 15.7 cm (3 s.f.)
- (c) Area of segment R= area of sector – area of triangle = $15 - \frac{1}{2}r^2 \sin 1.5^{\circ} \text{ cm}^2$ = $(15 - 10 \sin 1.5^{\circ}) \text{ cm}^2$ = $5.025 \text{ cm}^2 (3 \text{ d.p.})$
- © Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise D, Question 11

Question:

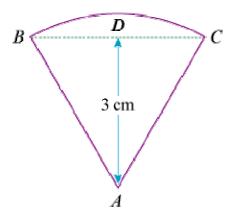
The shape of a badge is a sector ABC of a circle with centre A and radius AB, as shown in the diagram. The triangle ABC is equilateral and has perpendicular height 3 cm.



- (a) Find, in surd form, the length of AB.
- (b) Find, in terms of π , the area of the badge.
- (c) Prove that the perimeter of the badge is $\frac{2\sqrt{3}}{3}\left(\pi+6\right)$ cm.

[E]

Solution:



(a) Using the right-angled $\triangle ABD$, with $\angle ABD = 60^{\circ}$,

$$\sin 60^{\circ} = \frac{3}{AB}$$

$$\Rightarrow AB = \frac{3}{\sin 60^{\circ}} = \frac{3}{\frac{\sqrt{3}}{2}} = 3 \times \frac{2}{\sqrt{3}} = 2 \sqrt{3} \text{ cm}$$

- (b) Area of badge
- = area of sector

$$= \frac{1}{2} \times (2 \sqrt{3})^{2} \theta \text{ where } \theta = \frac{\pi}{3}$$

$$= \frac{1}{2} \times 12 \times \frac{\pi}{3}$$

- $=2\pi \text{ cm}^2$
- (c) Perimeter of badge

$$= AB + AC + arc BC$$

$$= \left(2\sqrt{3} + 2\sqrt{3} + 2\sqrt{3} \frac{\pi}{3} \right) cm$$

$$=2\sqrt{3}\left(2+\frac{\pi}{3}\right)$$
cm

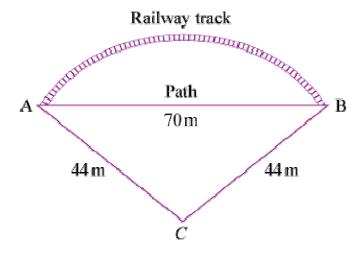
$$= \frac{2\sqrt{3}}{3} \left(6 + \pi \right)$$
cm

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise D, Question 12

Question:

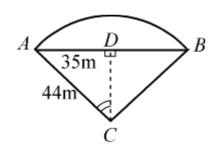
There is a straight path of length 70 m from the point A to the point B. The points are joined also by a railway track in the form of an arc of the circle whose centre is C and whose radius is 44 m, as shown in the diagram.



- (a) Show that the size, to 2 decimal places, of \angle ACB is 1.84 radians.
- (b) Calculate:
- (i) The length of the railway track.
- (ii) The shortest distance from *C* to the path.
- (iii) The area of the region bounded by the railway track and the path.

[E]

Solution:



(a) Using right-angled \triangle ADC

$$\sin \angle ACD = \frac{35}{44}$$

So
$$\angle ACD = \sin^{-1} \left(\frac{35}{44} \right)$$

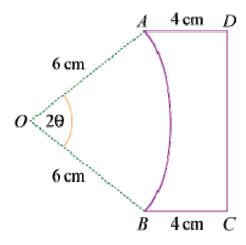
and
$$\angle$$
 ACB = $2 \sin^{-1} \left(\frac{35}{44} \right)$ (work in radian mode)
 $\Rightarrow \angle$ ACB = 1.8395 ... = 1.84° (2 d.p.)

- (b) (i) Length of railway track = length of arc AB = 44×1.8395 ... = 80.9 m (3 s.f.) (ii) Shortest distance from C to AB is DC. Using Pythagoras' theorem: $DC^2 = \frac{44^2 35^2}{40^2 35^2} = 26.7 \text{ m (3 s.f.)}$ (iii) Area of region = area of segment = area of sector ABC area of $\triangle ABC$
- $= \frac{1}{2} \times 44^{2} \times 1.8395 \quad \dots \quad \quad \frac{1}{2} \times 70 \times DC \quad (\text{or } \frac{1}{2} \times 44^{2} \times \sin 1.8395 \quad \dots \quad ^{c})$ $= 847 \text{ m}^{2} (3 \text{ s.f.})$
- © Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Radian measure and its applications Exercise D, Question 13

Question:



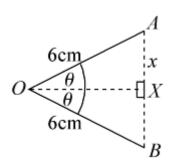
The diagram shows the cross-section ABCD of a glass prism. AD = BC = 4 cm and both are at right angles to DC. AB is the arc of a circle, centre O and radius 6 cm. Given that $\angle AOB = 2\theta$ radians, and that the perimeter of the cross-section is $2(7 + \pi)$ cm:

(a) Show that
$$\left(2\theta + 2 \sin \theta - 1\right) = \frac{\pi}{3}$$
.

(b) Verify that
$$\theta = \frac{\pi}{6}$$
.

(c) Find the area of the cross-section.

Solution:



$$\frac{x}{6} = \sin \theta$$

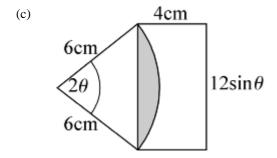
$$\Rightarrow x = 6 \sin \theta$$
So AB = 2x = 12 \sin \theta (AB = DC)
The perimeter of cross-section
= \arc AB + AD + DC + BC

=
$$[6(2\theta) + 4 + 12 \sin \theta + 4]$$
 cm
= $(8 + 12\theta + 12 \sin \theta)$ cm

So 2 (7 +
$$\pi$$
) = 8 + 12 θ + 12 sin θ
 \Rightarrow 14 + 2 π = 8 + 12 θ + 12 sin θ
 \Rightarrow 12 θ + 12 sin θ - 6 = 2 π

Divide by 6: $2\theta + 2 \sin \theta - 1 = \frac{\pi}{3}$

(b) When
$$\theta = \frac{\pi}{6}$$
, $2\theta + 2 \sin \theta - 1 = \frac{\pi}{3} + \left(2 \times \frac{1}{2}\right) - 1 = \frac{\pi}{3}$



The area of cross-section = area of rectangle ABCD – area of shaded segment

Area of rectangle =
$$4 \times \left(12 \sin \frac{\pi}{6} \right) = 24 \text{ cm}^2$$

Area of shaded segment

= area of sector – area of triangle

$$= \frac{1}{2} \times 6^2 \times \frac{\pi}{3} - \frac{1}{2} \times 6^2 \sin \frac{\pi}{3}$$

$$= 3.261 \dots cm^2$$

So area of cross-section = $20.7 \text{ cm}^2 (3 \text{ s.f.})$

Edexcel Modular Mathematics for AS and A-Level

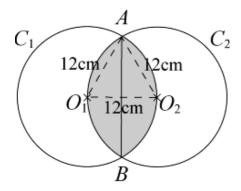
Radian measure and its applications Exercise D, Question 14

Question:

Two circles C_1 and C_2 , both of radius 12 cm, have centres O_1 and O_2 respectively. O_1 lies on the circumference of C_2 ; O_2 lies on the circumference of C_1 . The circles intersect at A and B, and enclose the region R.

- (a) Show that $\angle AO_1B = \frac{2}{3}\pi$ radians.
- (b) Hence write down, in terms of π , the perimeter of R.
- (c) Find the area of R, giving your answer to 3 significant figures.

Solution:



(a) $\triangle AO_1O_2$ is equilateral.

So
$$\angle AO_1O_2 = \frac{\pi}{3}$$
 radians

$$\angle AO_1B = 2 \angle AO_1O_2 = \frac{2\pi}{3}$$
 radians

(b) Consider arc AO_2B in circle C_1 .

Using arc length = $r\theta$

$$\operatorname{arc} AO_2B = 12 \times \frac{2\pi}{3} = 8\pi \text{ cm}$$

Perimeter of $R = \operatorname{arc} AO_2B + \operatorname{arc} AO_1B = 2 \times 8\pi = 16\pi \text{ cm}$

(c) Consider the segment AO_2B in circle C_1 .

Area of segment AO_2B

= area of sector O_1AB – area of $\triangle O_1AB$

$$=\frac{1}{2} \times 12^2 \times \frac{2\pi}{3} - \frac{1}{2} \times 12^2 \times \sin \frac{2\pi}{3}$$

 $= 88.442 \dots cm^2$

Area of region R

= area of segment AO_2B + area of segment AO_1B

$$= 2 \times 88.442 \quad \dots \quad cm^2$$

 $= 177 \text{ cm}^2 (3 \text{ s.f.})$