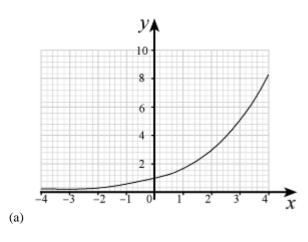
Exponentials and logarithms Exercise A, Question 1

Question:

(a) Draw an accurate graph of $y = (1.7)^{-x}$, for $-4 \le x \le 4$.

(b) Use your graph to solve the equation (1.7) x = 4.

Solution:



(b) Where $y = 4, x \approx 2.6$

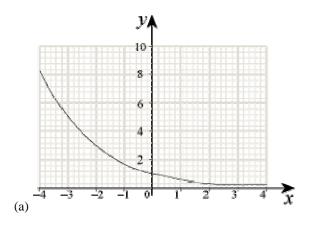
Exponentials and logarithms Exercise A, Question 2

Question:

(a) Draw an accurate graph of $y = (0.6)^{-x}$, for $-4 \le x \le 4$.

(b) Use your graph to solve the equation (0.6) x = 2.

Solution:



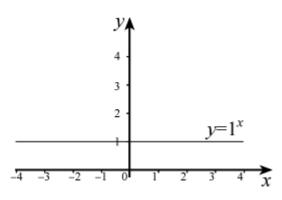
(b) Where $y = 2, x \approx -1.4$

Exponentials and logarithms Exercise A, Question 3

Question:

Sketch the graph of $y = 1^x$.

Solution:



Exponentials and logarithms Exercise B, Question 1

Question:

Rewrite as a logarithm:

(a) $4^4 = 256$

(b) $3^{-2} = \frac{1}{9}$

(c) $10^6 = 1 \quad 000 \quad 000$

(d) $11^1 = 11$

(e) (0.2) $^3 = 0.008$

Solution:

(a) $\log_4 256 = 4$

(b) $\log_3 \left(\begin{array}{c} \frac{1}{9} \\ \end{array} \right) = -2$

(c) $\log_{10} 1 \ 000 \ 000 = 6$

(d) $\log_{11} 11 = 1$

(e) $\log_{0.2} 0.008 = 3$

Exponentials and logarithms Exercise B, Question 2

Question:

Rewrite using a power:

(a) $\log_2 16 = 4$

(b) $\log_5 25 = 2$

(c) $\log_9 3 = \frac{1}{2}$

(d) $\log_5 0.2 = -1$

(e) $\log_{10} 100 \ 000 = 5$

Solution:

(a) $2^4 = 16$

(b) $5^2 = 25$

(c)
$$9^{\frac{1}{2}} = 3$$

(d) $5^{-1} = 0.2$

(e) $10^5 = 100 \quad 000$

Exponentials and logarithms Exercise B, Question 3

Question:

Find the value of:

(a) $\log_2 8$

(b) log₅ 25

(c) $\log_{10} 10 \ 000 \ 000$

(d) log₁₂ 12

(e) log₃ 729

(f) $\log_{10} \sqrt{10}$

(g) \log_4 (0.25)

(h) $\log_{0.25}$ 16

(i) $\log_a (a^{10})$

(j) log
$$\begin{pmatrix} \frac{2}{3} \\ \frac{3}{3} \end{pmatrix} \begin{pmatrix} \frac{9}{4} \\ \frac{9}{4} \end{pmatrix}$$

Solution:

- (a) If $\log_2 8 = x$ then $2^x = 8$, so x = 3
- (b) If $\log_5 25 = x$ then $5^x = 25$, so x = 2

(c) If $\log_{10} 10 \ 000 \ 000 = x$ then $10^x = 10 \ 000 \ 000$, so x = 7

(d) If
$$\log_{12} 12 = x$$
 then $12^x = 12$, so $x = 1$

(e) If $\log_3 729 = x$ then $3^x = 729$, so x = 6

(f) If $\log_{10} \sqrt{10} = x$ then $10^x = \sqrt{10}$, so $x = \frac{1}{2}$ (Power $\frac{1}{2}$ means 'square root'.)

(g) If $\log_4 (0.25) = x$ then $4^x = 0.25 = \frac{1}{4}$, so x = -1

(Negative power means 'reciprocal'.)

(h)
$$\log_{0.25} 16 = x$$

 $\Rightarrow 0.25^{x} = 16$
 $\Rightarrow \left(\frac{1}{4} \right)^{x} = 16, \text{ so } x = -2$

$$\left[\left(\frac{1}{4} \right)^{-2} = \frac{1}{\left(\frac{1}{4}\right)^{2}} = \frac{1}{\left(\frac{1}{16}\right)} = 16 \right]$$

(i) $\log_a (a^{10}) = x$ $\Rightarrow a^x = a^{10}$, so x = 10

(j)
$$\log \left(\frac{2}{3}\right) \left(\frac{9}{4}\right) = x$$

$$\Rightarrow \left(\frac{2}{3}\right)^{x} = \frac{9}{4}, \text{ so } x = -2$$

$$\left[\left(\frac{2}{3}\right)^{-2} = \frac{1}{\left(\frac{2}{3}\right)^{2}} = \frac{1}{\left(\frac{4}{9}\right)} = \frac{9}{4}\right]$$

Exponentials and logarithms Exercise B, Question 4

Question:

Find the value of *x* for which:

(a) $\log_5 x = 4$

(b) $\log_{r} 81 = 2$

(c) $\log_7 x = 1$

(d) $\log_x (2x) = 2$

Solution:

(a) Using a power, $5^4 = x$ So x = 625

(b) Using a power, $x^2 = 81$ So x = 9(The base of a logarithm cannot be negative, so x = -9 is not possible.)

(c) Using a power, $7^1 = x$ So x = 7

(d) Using a power, $x^2 = 2x$ $x^2 - 2x = 0$ x (x - 2) = 0 x = 2(The base of a logarithm cannot be zero, so x = 0 is not possible.)

Exponentials and logarithms Exercise C, Question 1

Question:

Find from your calculator the value to 3 s.f. of:

 $\log_{10}\ 20$

Solution:

 $\log_{10} 20 = 1.3010$... = 1.30 (3 s.f.)

Exponentials and logarithms Exercise C, Question 2

Question:

Find from your calculator the value to 3 s.f. of: $\log_{10} 4$

Solution:

 $\log_{10} 4 = 0.6020 \dots = 0.602 (3 \text{ s.f.})$

Exponentials and logarithms Exercise C, Question 3

Question:

Find from your calculator the value to 3 s.f. of: $\log_{10} 7000$

Solution:

 $\log_{10} 7000 = 3.8450 \dots = 3.85 (3 \text{ s.f.})$

Exponentials and logarithms Exercise C, Question 4

Question:

Find from your calculator the value to 3 s.f. of: $\log_{10} 0.786$

Solution:

 $\log_{10} 0.786 = -0.1045 \quad \dots \quad = -0.105 \; (3 \; \text{s.f.})$

Exponentials and logarithms Exercise C, Question 5

Question:

Find from your calculator the value to 3 s.f. of: $\log_{10} 11$

Solution:

 $\log_{10} 11 = 1.0413 \dots = 1.04 (3 \text{ s.f.})$

Exponentials and logarithms Exercise C, Question 6

Question:

Find from your calculator the value to 3 s.f. of: $\log_{10} 35.3$

Solution:

 $\log_{10} 35.3 = 1.5477$... = 1.55 (3 s.f.)

Exponentials and logarithms Exercise C, Question 7

Question:

Find from your calculator the value to 3 s.f. of: $\log_{10} 0.3$

Solution:

 $\log_{10} 0.3 = -0.5228 \dots = -0.523 (3 \text{ s.f.})$

Exponentials and logarithms Exercise C, Question 8

Question:

Find from your calculator the value to 3 s.f. of: $\log_{10} 999$

Solution:

 $\log_{10} 999 = 2.9995 \dots = 3.00 (3 \text{ s.f.})$

Exponentials and logarithms Exercise D, Question 1

Question:

Write as a single logarithm:

- (a) $\log_2 7 + \log_2 3$
- (b) $\log_2 36 \log_2 4$
- (c) $3 \log_5 2 + \log_5 10$
- (d) $2 \log_6 8 4 \log_6 3$

(e) $\log_{10} 5 + \log_{10} 6 - \log_{10} \left(\begin{array}{c} \frac{1}{4} \\ 4 \end{array} \right)$

Solution:

(a) \log_2 (7 × 3) = \log_2 21

(b) $\log_2 \left(\begin{array}{c} \frac{36}{4} \end{array} \right) = \log_2 9$

(c) $3 \log_5 2 = \log_5 2^3 = \log_5 8$ $\log_5 8 + \log_5 10 = \log_5 (8 \times 10) = \log_5 80$

(d) 2
$$\log_6 8 = \log_6 8^2 = \log_6 64$$

4 $\log_6 3 = \log_6 3^4 = \log_6 81$
 $\log_6 64 - \log_6 81 = \log_6 \left(\frac{64}{81} \right)$

(e) $\log_{10} 5 + \log_{10} 6 = \log_{10} (5 \times 6) = \log_{10} 30$

$$\log_{10} 30 - \log_{10} \begin{pmatrix} 1 \\ \frac{1}{4} \end{pmatrix} = \log_{10} \begin{bmatrix} 30 \\ \frac{30}{4} \end{bmatrix} = \log_{10} 120$$

Exponentials and logarithms Exercise D, Question 2

Question:

Write as a single logarithm, then simplify your answer:

- (a) $\log_2 40 \log_2 5$
- (b) $\log_6 4 + \log_6 9$
- (c) $2 \log_{12} 3 + 4 \log_{12} 2$
- (d) $\log_8 25 + \log_8 10 3 \log_8 5$

(e) $2 \log_{10} 20 - (\log_{10} 5 + \log_{10} 8)$

Solution:

(a) $\log_2 \left(\frac{40}{5}\right) = \log_2 8 = 3$ $\left(2^3 = 8\right)$ (b) $\log_6 (4 \times 9) = \log_6 36 = 2$ $(6^2 = 36)$ (c) $\log_{12} (3^2) + \log_{12} (2^4)$ $= \log_{12} 9 + \log_{12} 16$ $= \log_{12} (9 \times 16)$ $= \log_{12} 144$ $= 2 (12^2 = 144)$ (d) $\log_8 (25 \times 10) - \log_8 (5^3)$ $= \log_8 250 - \log_8 125$ $= \log_8 \left(\frac{250}{125}\right)$ $= \log_8 2$ $= \frac{1}{3} \left(8^{\frac{1}{3}} = 2\right)$ (e) $\log_{10} (20^2) - \log_{10} (5 \times 8)$ $= \log_{10} 400 - \log_{10} 40$ $= \log_{10} \left(\frac{400}{40}\right)$

 $= \log_{10} 10$ = 1 (10¹ = 10)

Exponentials and logarithms Exercise D, Question 3

Question:

Write in terms of $\log_a x$, $\log_a y$ and $\log_a z$:

(a) \log_a (x^3y^4z)

(b) $\log_a \left(\begin{array}{c} \frac{x^5}{y^2} \end{array} \right)$

(c) $\log_a (a^2 x^2)$

(d)
$$\log_a \left(\frac{x \sqrt{y}}{z} \right)$$

(e) $\log_a \sqrt{ax}$

Solution:

(a) $\log_a x^3 + \log_a y^4 + \log_a z$ = 3 $\log_a x + 4 \log_a y + \log_a z$ (b) $\log_a x^5 - \log_a y^2$ = 5 $\log_a x - 2 \log_a y$ (c) $\log_a a^2 + \log_a x^2$ = 2 $\log_a a + 2 \log_a x$ = 2 + 2 $\log_a x$ ($\log_a a = 1$) (d) $\log_a x + \log_a y^{\frac{1}{2}} - \log_a z$ = $\log_a x + \frac{1}{2}\log_a y - \log_a z$ (e) $\log_a (ax)^{\frac{1}{2}}$ = $\frac{1}{2}\log_a (ax)$ = $\frac{1}{2}\log_a a + \frac{1}{2}\log_a x$ = $\frac{1}{2} + \frac{1}{2}\log_a x$

Exponentials and logarithms Exercise E, Question 1

Question:

Solve, giving your answer to 3 significant figures:

(a) $2^x = 75$

(b) $3^x = 10$

(c) $5^x = 2$

(d) $4^{2x} = 100$

(e) $9^{x+5} = 50$

(f) $7^{2x-1} = 23$

(g) $3^{x-1} = 8^{x+1}$

(h) $2^{2x+3} = 3^{3x+2}$

(i) $8^{3-x} = 10^x$

(i) $3^{4-3x} = 4^{x+5}$

Solution:

```
(a) 2^x = 75
\log 2^x = \log 75
x \log 2 = \log 75
     log 75
x = \frac{1}{\log 2}
x = 6.23 (3 s.f.)
(b) 3^x = 10
\log 3^x = \log 10
x \log 3 = \log 10
      log 10
x = \frac{1}{\log 3}
x = 2.10 (3 \text{ s.f.})
(c) 5^x = 2
\log 5^x = \log 2
x \log 5 = \log 2
      log 2
x = \frac{1 - c}{\log 5}
x = 0.431 (3 s.f.)
(d) 4^{2x} = 100
\log 4^{2x} = \log 100
2x \log 4 = \log 100
```

log 100 $x = \frac{1}{2} \log 4$ x = 1.66 (3 s.f.)(e) $9^{x+5} = 50$ $\log 9^{x+5} = \log 50$ $(x+5) \log 9 = \log 50$ $x \log 9 + 5 \log 9 = \log 50$ $x \log 9 = \log 50 - 5 \log 9$ log 50 - 5 log 9*x* = log 9 x = -3.22 (3 s.f.) (f) $7^{2x-1} = 23$ $\log 7^{2x-1} = \log 23$ $(2x-1) \log 7 = \log 23$ $2x \log 7 - \log 7 = \log 23$ $2x \log 7 = \log 23 + \log 7$ $x = \frac{\log 23 + \log 7}{2}$ 2 log 7 x = 1.31 (3 s.f.)(g) $3^{x-1} = 8^{x+1}$ $\log 3^{x-1} = \log 8^{x+1}$ $(x-1) \log 3 = (x+1) \log 8$ $x \log 3 - \log 3 = x \log 8 + \log 8$ $x (\log 3 - \log 8) = \log 3 + \log 8$ $log \ 3 + log \ 8$ $x = \frac{1}{\log 3 - \log 8}$ x = -3.24 (3 s.f.) (h) $2^{2x+3} = 3^{3x+2}$ $\log 2^{2x+3} = \log 3^{3x+2}$ $(2x+3) \log 2 = (3x+2) \log 3$ $2x \log 2 + 3 \log 2 = 3x \log 3 + 2 \log 3$ $2x \log 2 - 3x \log 3 = 2 \log 3 - 3 \log 2$ $x (2 \log 2 - 3 \log 3) = 2 \log 3 - 3 \log 2$ $2 \log 3 - 3 \log 2$ $x = \overline{2 \log 2 - 3 \log 3}$ x = -0.0617 (3 s.f.) (i) $8^{3-x} = 10^{x}$ $\log 8^{3-x} = \log 10^x$ $(3-x) \log 8 = x \log 10$ $3 \log 8 - x \log 8 = x \log 10$ $3 \log 8 = x (\log 10 + \log 8)$ 3 log 8 $x = \frac{1}{\log 10 + \log 8}$ x = 1.42 (3 s.f.) (i) $3^{4-3x} = 4^{x+5}$ $\log 3^{4-3x} = \log 4^{x+5}$ $(4-3x) \log 3 = (x+5) \log 4$ $4 \log 3 - 3x \log 3 = x \log 4 + 5 \log 4$ $4 \log 3 - 5 \log 4 = x \log 4 + 3x \log 3$ $4 \log 3 - 5 \log 4 = x (\log 4 + 3 \log 3)$ $\frac{4 \ \log \ 3 - 5 \ \log \ 4}{\log \ 4 + 3 \ \log \ 3}$ x =x = -0.542 (3 s.f.)

Exponentials and logarithms Exercise E, Question 2

Question:

Solve, giving your answer to 3 significant figures:

(a) $2^{2x} - 6(2^x) + 5 = 0$

(b) $3^{2x} - 15(3^x) + 44 = 0$

(c) $5^{2x} - 6 (5^x) - 7 = 0$

(d) $3^{2x} + 3^{x+1} - 10 = 0$

(e) $7^{2x} + 12 = 7^{x+1}$

(f) $2^{2x} + 3(2^x) - 4 = 0$

(g) $3^{2x+1} - 26(3^x) - 9 = 0$

(h) 4 (3^{2x+1}) + 17 (3^x) - 7 = 0

Solution:

```
(a) Let y = 2^x
y^2 - 6y + 5 = 0
(y-1)(y-5) = 0
So y = 1 or y = 5
If y = 1, 2^x = 1, x = 0
If y = 5, 2^x = 5
\log 2^x = \log 5
x \log 2 = \log 5
     log 5
x = \overline{\log 2}
x = 2.32 (3 s.f.)
So x = 0 or x = 2.32
(b) Let y = 3^x
y^2 - 15y + 44 = 0
(y-4)(y-11) = 0
So y = 4 or y = 11
If y = 4, 3^x = 4
\log 3^x = \log 4
x \log 3 = \log 4
     log 4
x = \overline{\log 3}
x = 1.26 (3 \text{ s.f.})
If y = 11, 3^x = 11
\log 3^{x} = \log 11
x \log 3 = \log 11
x = \frac{\log 11}{\log 3}
x = 2.18 (3 s.f.)
```

So x = 1.26 or x = 2.18

(c) Let $y = 5^x$ $y^2 - 6y - 7 = 0$ (y+1)(y-7) = 0So y = -1 or y = 7If y = -1, $5^x = -1$. No solution. If y = 7, $5^x = 7$ $\log 5^x = \log 7$ $x \log 5 = \log 7$ log 7 $x = \frac{1}{\log 5}$ x = 1.21 (3 s.f.) (d) Let $y = 3^x$ $(3^x)^2 + (3^x \times 3) - 10 = 0$ $y^2 + 3y - 10 = 0$ (y+5)(y-2) = 0So y = -5 or y = 2If y = -5, $3^x = -5$. No solution. If $y = 2, 3^x = 2$ $\log 3^x = \log 2$ $x \log 3 = \log 2$ log 2 $x = \frac{1}{\log 3}$ x = 0.631 (3 s.f.)(e) Let $y = 7^x$ $(7^x)^2 + 12 = 7^x \times 7$ $y^2 + 12 = 7y$ $y^2 - 7y + 12 = 0$ (y-3)(y-4) = 0So y = 3 or y = 4If y = 3, $7^x = 3$ $x \log 7 = \log 3$ log 3 x =log 7 x = 0.565 (3 s.f.)If y = 4, $7^x = 4$ $x \log 7 = \log 4$ log 4 $x = \overline{\log 7}$ x = 0.712 (3 s.f.) So x = 0.565 or x = 0.712(f) $2^{2x} + 3(2^x) - 4 = 0$ Let $y = 2^x$ Then $y^2 + 3y - 4 = 0$ So (y+4)(y-1) = 0So y = -4 or y = 1 $2^x = -4$ has no solution Therefore $2^x = 1$ So x = 0 is the only solution (g) $3^{2x+1} - 26(3^x) - 9 = 0$ Let $y = 3^x$ Then $3y^2 - 26y - 9 = 0$ So (3y+1)(y-9) = 0

So $y = -\frac{1}{3}$ or y = 9 $3^{x} = -\frac{1}{3}$ has no solution Therefore $3^{x} = 9$ So x = 2 is the only solution (h) 4 $(3^{2x+1}) + 17(3^{x}) - 7 = 0$ 12 $(3^{2x}) + 17(3^{x}) - 7 = 0$ Let $y = 3^{x}$ So $12y^{2} + 17y - 7 = 0$ So (3y - 1)(4y + 7) = 0So $y = \frac{1}{3}$ or $y = -\frac{7}{4}$ $3^{x} = -\frac{7}{4}$ has no solution

Therefore $3^x = \frac{1}{3}$

So x = -1 is the only solution

Exponentials and logarithms Exercise F, Question 1

Question:

Find, to 3 decimal places:

(a) log₇ 120

(b) log₃ 45

(c) log₂ 19

(d) log₁₁ 3

(e) $\log_6 4$

Solution:

(a) $\log_7 120 = \frac{\log_{10} 120}{\log_{10} 7} = 2.460 \text{ (3 d.p.)}$

(b) $\log_3 45 = \frac{\log_{10} 45}{\log_{10} 3} = 3.465 (3 \text{ d.p.})$

(c)
$$\log_2 19 = \frac{\log_{10} 19}{\log_{10} 2} = 4.248 (3 \text{ d.p.})$$

(d) $\log_{11} 3 = \frac{\log_{10} 3}{\log_{10} 11} = 0.458 (3 \text{ d.p.})$

(e)
$$\log_6 4 = \frac{\log_{10} 4}{\log_{10} 6} = 0.774 (3 \text{ d.p.})$$

Exponentials and logarithms Exercise F, Question 2

Question:

Solve, giving your answer to 3 significant figures:

(a) $8^x = 14$

(b) $9^x = 99$

(c) $12^x = 6$

Solution:

(a) $\log 8^{x} = \log 14$ $x \log 8 = \log 14$ $x = \frac{\log_{10} 14}{\log_{10} 8}$ x = 1.27 (3 s.f.)(b) $\log 9^{x} = \log 99$ $x \log 9 = \log 99$ $x = \frac{\log_{10} 99}{\log_{10} 9}$ x = 2.09 (3 s.f.)(c) $\log 12^{x} = \log 6$ $x \log 12 = \log 6$ $x = \frac{\log_{10} 6}{\log_{10} 12}$

x = 0.721 (3 s.f.)

Exponentials and logarithms Exercise F, Question 3

Question:

Solve, giving your answer to 3 significant figures:

(a) $\log_2 x = 8 + 9 \log_x 2$

(b) $\log_4 x + 2 \log_x 4 + 3 = 0$

(c) $\log_2 x + \log_4 x = 2$

Solution:

```
(a) \log_2 x = 8 + 9 \log_x 2
\log_2 x = 8 + \frac{9}{\log_2 x}
Let \log_2 x = y
y = 8 + \frac{9}{y}
y^2 = 8y + 9
y^2 - 8y - 9 = 0
(y+1)(y-9) = 0
So y = -1 or y = 9
If y = -1, \log_2 x = -1
    \Rightarrow x = 2^{-1} = \frac{1}{2}
If y = 9, \log_2 x = 9
    \Rightarrow x = 2^9 = 512
So x = \frac{1}{2} or x = 512
(b) \log_4 x + 2 \log_x 4 + 3 = 0
\log_4 x + \frac{2}{\log_4 x} + 3 = 0
Let \log_4 x = y
y + \frac{2}{y} + 3 = 0
y^2 + 2 + 3y = 0
y^2 + 3y + 2 = 0
(y+1)(y+2) = 0
So y = -1 or y = -2
If y = -1, \log_4 x = -1
    \Rightarrow x = 4^{-1} = \frac{1}{4}
If y = -2, \log_4 x = -2
   \Rightarrow x = 4^{-2} = \frac{1}{16}
```

So $x = \frac{1}{4}$ or $x = \frac{1}{16}$ (c) $\log_2 x + \log_4 x = 2$ $\log_2 x + \frac{\log_2 x}{\log_2 4} = 2$ But $\log_2 4 = 2$ (because $2^2 = 4$), so $\log_2 x + \frac{\log_2 x}{2} = 2$ $\frac{3}{2}\log_2 x = 2$ $\log_2 x = \frac{4}{3}$ $x = 2^{\frac{4}{3}}$

$$x = 2.52 (3 \text{ s.f.})$$

Exponentials and logarithms Exercise G, Question 1

Question:

Find the possible values of x for which $2^{2x+1} = 3(2^x) - 1$. **[E]**

Solution:

 $2^{2x + 1} = 3(2^{x}) - 1$ $2^{2x} \times 2^{1} = 3(2^{x}) - 1$ Let $2^{x} = y$ $2y^{2} = 3y - 1$ $2y^{2} - 3y + 1 = 0$ (2y - 1)(y - 1) = 0So $y = \frac{1}{2}$ or y = 1If $y = \frac{1}{2}, 2^{x} = \frac{1}{2}, x = -1$ If $y = 1, 2^{x} = 1, x = 0$ So x = 0 or x = -1

Exponentials and logarithms Exercise G, Question 2

Question:

(a) Express $\log_a (p^2q)$ in terms of $\log_a p$ and $\log_a q$.

(b) Given that $\log_a (pq) = 5$ and $\log_a (p^2q) = 9$, find the values of $\log_a p$ and $\log_a q$. [E]

Solution:

(a) $\log_a (p^2 q) = \log_a (p^2) + \log_a q = 2 \log_a p + \log_a q$

(b) \log_a (pq) = $\log_a p + \log_a q$ So $\log_a p + \log_a q = 5$ ① $2 \log_a p + \log_a q = 9$ ② Subtracting equation ① from equation ②: $\log_a p = 4$ So $\log_a q = 1$

Exponentials and logarithms Exercise G, Question 3

Question:

Given that $p = \log_a 16$, express in terms of p,

(a) $\log_q 2$,

(b) \log_q (8q). [E]

Solution:

(a) $p = \log_q 16$ $p = \log_q (2^4)$ $p = 4 \log_q 2$ $\log_q 2 = \frac{p}{4}$

(b) \log_q (8q) = $\log_q 8 + \log_q q$ = $\log_q (2^3) + \log_q q$ = $3 \log_q 2 + \log_q q$ = $\frac{3p}{4} + 1$

Exponentials and logarithms Exercise G, Question 4

Question:

(a) Given that $\log_3 x = 2$, determine the value of x.

(b) Calculate the value of y for which $2 \log_3 y - \log_3 (y + 4) = 2$.

(c) Calculate the values of z for which $\log_3 z = 4 \log_z 3$.

[E]

Solution:

(a) $\log_3 x = 2$ $x = 3^2 = 9$ (b) $2 \log_3 y - \log_3 (y+4) = 2$ $\log_3(y^2) - \log_3(y+4) = 2$ $\log_3\left(\begin{array}{c}\frac{y^2}{y+4}\end{array}\right) = 2$ $\frac{y^2}{y+4} = 9$ $y^2 = 9y + 36$ $y^2 - 9y - 36 = 0$ (y+3)(y-12) = 0y = -3 or y = 12But $\log_3 (-3)$ is not defined, So y = 12(c) $\log_3 z = 4 \log_2 3$ $\log_3 z = \frac{4}{\log_3 z}$ $(\log_3 z)^2 = 4$ Either $\log_3 z = 2$ or $\log_3 z = -2$ $z = 3^2$ or $z = 3^{-2}$ $z = 9 \text{ or } z = \frac{1}{9}$

Exponentials and logarithms Exercise G, Question 5

Question:

(a) Using the substitution $u = 2^x$, show that the equation $4^x - 2^{(x+1)} - 15 = 0$ can be written in the form $u^2 - 2u - 15 = 0$.

(b) Hence solve the equation $4^x - 2^{(x+1)} - 15 = 0$, giving your answer to 2 decimal places. **[E]**

Solution:

(a) $4^{x} - 2^{(x+1)} - 15 = 0$ $4^{x} = (2^{2})^{x} = (2^{x})^{2}$ $2^{x+1} = 2^{x} \times 2^{1}$ Let $u = 2^{x}$ $u^{2} - 2u - 15 = 0$

(b) (u + 3) (u - 5) = 0So u = -3 or u = 5If u = -3, $2^x = -3$. No solution. If u = 5, $2^x = 5$ log $2^x = \log 5$ $x \log 2 = \log 5$ $x = \frac{\log 5}{\log 2}$ x = 2.32 (2 d.p.)

Exponentials and logarithms Exercise G, Question 6

Question:

Solve, giving your answers as exact fractions, the simultaneous equations:

 $8^{y} = 4^{2x+3}$ $\log_{2} y = \log_{2} x + 4.$ **[E]**

Solution:

 $8^{y} = 4^{2x+3}$ $(2^{3})^{y} = (2^{2})^{2x+3}$ $2^{3y} = 2^{2(2x+3)}$ $3y = 4x + 6 \quad \textcircled{D}$ $\log_{2} y - \log_{2} x = 4$ $\log_{2} \left(\frac{y}{x}\right) = 4$ $\frac{y}{x} = 2^{4} = 16$ $y = 16x \quad \textcircled{D}$ Substitute O into O: 48x = 4x + 6 44x = 6 $x = \frac{3}{22}$ $y = 16x = \frac{48}{22} = 2\frac{2}{11}$ So $x = \frac{3}{22}, y = 2\frac{2}{11}$

Exponentials and logarithms Exercise G, Question 7

Question:

Find the values of x for which $\log_3 x - 2 \log_x 3 = 1$. **[E]**

Solution:

```
\log_{3} x - 2 \ \log_{x} 3 = 1

\log_{3} x - \frac{2}{\log_{3} x} = 1

Let \log_{3} x = y

y - \frac{2}{y} = 1

y^{2} - 2 = y

y^{2} - y - 2 = 0

(y + 1) (y - 2) = 0

So y = -1 or y = 2

If y = -1, \log_{3} x = -1

\Rightarrow x = 3^{-1} = \frac{1}{3}

If y = 2, \log_{3} x = 2

\Rightarrow x = 3^{2} = 9

So x = \frac{1}{3} or x = 9
```

Exponentials and logarithms Exercise G, Question 8

Question:

Solve the equation $\log_3 (2-3x) = \log_9 (6x^2 - 19x + 2)$. **[E]**

Solution:

$$\log_{3} (2 - 3x) = \log_{9} (6x^{2} - 19x + 2)$$

$$\log_{9} \begin{pmatrix} 6x^{2} - 19x + 2 \\ 6x^{2} - 19x + 2 \end{pmatrix} = \frac{\log_{3} (6x^{2} - 19x + 2)}{\log_{3} 9} = \frac{\log_{3} (6x^{2} - 19x + 2)}{2}$$
So
$$2 \log_{3} (2 - 3x) = \log_{3} (6x^{2} - 19x + 2)$$

$$\log_{3} (2 - 3x)^{2} = \log_{3} (6x^{2} - 19x + 2)$$

$$(2 - 3x)^{2} = 6x^{2} - 19x + 2$$

$$4 - 12x + 9x^{2} = 6x^{2} - 19x + 2$$

$$3x^{2} + 7x + 2 = 0$$

$$(3x + 1) (x + 2) = 0$$

$$x = -\frac{1}{3} \text{ or } x = -2$$

(Both solutions are valid, since they give logs of positive numbers in the original equation.)

Exponentials and logarithms Exercise G, Question 9

Question:

If xy = 64 and $\log_x y + \log_y x = \frac{5}{2}$, find x and y. **[E]**

Solution:

```
\log_{x} y + \log_{y} x = \frac{5}{2}
\log_{x} y + \frac{1}{\log_{x} y} = \frac{5}{2}
Let \log_{x} y = u
u + \frac{1}{u} = \frac{5}{2}
2u^{2} + 2 = 5u
2u^{2} - 5u + 2 = 0
(2u - 1) (u - 2) = 0
u = \frac{1}{2} \text{ or } u = 2
```

If $u = \frac{1}{2}$, $\log_x y = \frac{1}{2}$ $\Rightarrow y = x^{\frac{1}{2}} = \sqrt{x}$ Since xy = 64, $x \sqrt{x} = 64 \quad \left(x^{\frac{3}{2}} = 64\right)$ x = 16 $y = \sqrt{x} = 4$ If u = 2, $\log_x y = 2$ $\Rightarrow y = x^2$ Since xy = 64, $x^3 = 64$ x = 4 $y = x^2 = 16$ So x = 16, y = 4 or x = 4, y = 16

Exponentials and logarithms Exercise G, Question 10

Question:

Prove that if $a^x = b^y = (ab)^{xy}$, then x + y = 1. **[E]**

Solution:

Given that $a^x = b^y = (ab)^{xy}$ Take logs to base a for $a^x = b^y$: $\log_a (a^x) = \log_a (b^y)$ $x \log_a a = y \log_a b$ $x = y \log_a b$

Take logs to base *a* for $a^x = (ab)^{xy}$ $x = \log_a (ab)^{xy}$ $x = xy \log_a (ab)$ $x = xy (\log_a a + \log_a b)$ $x = xy (1 + \log_a b)$ $1 = y (1 + \log_a b)$

But, from $\textcircled{0}, \log_a b = \frac{x}{y}$

Substitute into 2:

$$1 = y \left(1 + \frac{x}{y} \right)$$
$$1 = y + x$$
$$x + y = 1$$

Exponentials and logarithms Exercise G, Question 11

Question:

(a) Show that $\log_4 3 = \log_2 \sqrt{3}$.

(b) Hence or otherwise solve the simultaneous equations: $2 \log_2 y = \log_4 3 + \log_2 x$, $3^y = 9^x$, given that *x* and *y* are positive. **[E]**

Solution:

(a) $\log_4 3 = \frac{\log_2 3}{\log_2 4} = \frac{\log_2 3}{2}$ $\log_4 3 = \frac{1}{2}\log_2 3 = \log_2 3^{\frac{1}{2}} = \log_2 \sqrt{3}$ (b) $3^y = 9^x$

 $3^{y} = (3^{2})^{x} = 3^{2x}$ So y = 2x $2 \log_{2} y = \log_{4} 3 + \log_{2} x$ $\log_{2} (y^{2}) = \log_{2} \sqrt{3} + \log_{2} x = \log_{2} (x \sqrt{3})$ So $y^{2} = x \sqrt{3}$ Since y = 2x, $(2x)^{2} = x \sqrt{3}$ $\Rightarrow 4x^{2} = x \sqrt{3}$ x is positive, so $x \neq 0$, $x = \frac{\sqrt{3}}{4}$

$$\Rightarrow \quad y = 2x = \frac{\sqrt{3}}{2}$$

So $x = \frac{\sqrt{3}}{4}, y = \frac{\sqrt{3}}{2}$

Exponentials and logarithms Exercise G, Question 12

Question:

(a) Given that $3 + 2 \log_2 x = \log_2 y$, show that $y = 8x^2$.

(b) Hence, or otherwise, find the roots α and β , where $\alpha < \beta$, of the equation $3 + 2 \log_2 x = \log_2 (14x - 3)$.

(c) Show that $\log_2 \alpha = -2$.

(d) Calculate $\log_2 \beta$, giving your answer to 3 significant figures. **[E]**

Solution:

(a)
$$3 + 2 \log_2 x = \log_2 y$$

 $\log_2 y - 2 \log_2 x = 3$
 $\log_2 y - \log_2 x^2 = 3$
 $\log_2 \left(\frac{y}{x^2}\right) = 3$
 $\frac{y}{x^2} = 2^3 = 8$
 $y = 8x^2$

(b) Comparing equations, y = 14x - 3 $8x^2 = 14x - 3$ $8x^2 - 14x + 3 = 0$ (4x - 1) (2x - 3) = 0 $x = \frac{1}{4}$ or $x = \frac{3}{2}$ $\alpha = \frac{1}{4}, \beta = \frac{3}{2}$

(c) $\log_2 \alpha = \log_2 \left(\frac{1}{4}\right) = -2$, since $2^{-2} = \frac{1}{2^2} = \frac{1}{4}$ (d) $\log_2 \beta = \log_2 \left(\frac{3}{2}\right)$

$$\log_2 1.5 = \frac{\log_{10} 1.5}{\log_{10} 2} = 0.585 (3 \text{ s.f.})$$