Trigonometrical identities and simple equations **Exercise A**, Question 1

Question:

Simplify each of the following expressions:

(a) $1 - \cos^2 = \frac{1}{2}\theta$ (b) $5 \sin^2 3\theta + 5 \cos^2 3\theta$ (c) $\sin^2 A - 1$ (d) $\frac{\sin \theta}{\tan \theta}$ (e) $\frac{\sqrt{1-\cos^2 x^{\circ}}}{\cos x^{\circ}}$ (f) $\frac{\sqrt{1-\cos^2 3A}}{\sqrt{1-\sin^2 3A}}$ (g) $(1 + \sin x)^2 + (1 - \sin x)^2 + 2\cos^2 x$ (h) $\sin^4 \theta + \sin^2 \theta \cos^2 \theta$ (i) $\sin^4 \theta + 2 \sin^2 \theta \cos^2 \theta + \cos^4 \theta$ Solution: (a) As $\sin^2 \frac{1}{2}\theta + \cos^2 \frac{1}{2}\theta \equiv 1$ So $1 - \cos^2 \quad \frac{1}{2}\theta = \sin^2 \quad \frac{1}{2}\theta$ (b) As $\sin^2 3\theta + \cos^2 3\theta \equiv 1$ $5 \sin^2 3\theta + 5 \cos^2 3\theta = 5 (\sin^2 3\theta + \cos^2 3\theta) = 5$ So (c) As $\sin^2 A + \cos^2 A \equiv 1$ So $\sin^2 A - 1 \equiv -\cos^2 A$ (d) $\frac{\sin \theta}{\tan \theta} = \frac{\sin \theta}{\frac{\sin \theta}{\sin \theta}}$

 $=\sin\theta \times \frac{\cos\theta}{\sin\theta}$

(e) $\frac{\sqrt{1-\cos^2 x^\circ}}{\cos x^\circ} = \frac{\sqrt{\sin^2 x^\circ}}{\cos x^\circ} = \frac{\sin x^\circ}{\cos x^\circ} = \tan x^\circ$ (f) $\frac{\sqrt{1-\cos^2 3A}}{\sqrt{1-\sin^2 3A}} = \frac{\sqrt{\sin^2 3A}}{\sqrt{\cos^2 3A}} = \frac{\sin 3A}{\cos 3A} = \tan 3A$

(g) $(1 + \sin x^{\circ})^{2} + (1 - \sin x^{\circ})^{2} + 2 \cos^{2} x^{\circ}$ = $1 + 2 \sin x^{\circ} + \sin^{2} x^{\circ} + 1 - 2 \sin x^{\circ} + \sin^{2} x^{\circ} + 2 \cos^{2} x^{\circ}$ = $2 + 2 \sin^{2} x^{\circ} + 2 \cos^{2} x^{\circ}$ = $2 + 2 (\sin^{2} x^{\circ} + \cos^{2} x^{\circ})$ = 2 + 2= 4

(h) $\sin^4 \theta + \sin^2 \theta \cos^2 \theta = \sin^2 \theta (\sin^2 \theta + \cos^2 \theta) = \sin^2 \theta$

(i) $\sin^4 \theta + 2 \sin^2 \theta \cos^2 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 = 1^2 = 1$

© Pearson Education Ltd 2008

 $= \cos \theta$

Trigonometrical identities and simple equations Exercise A, Question 2

Question:

Given that 2 sin $\theta = 3 \cos \theta$, find the value of tan θ .

Solution:

Given 2 sin $\theta = 3 \cos \theta$ So $\frac{\sin \theta}{\cos \theta} = \frac{3}{2}$ (divide both sides by 2 cos θ) So tan $\theta = \frac{3}{2}$

Trigonometrical identities and simple equations Exercise A, Question 3

Question:

Given that sin x cos $y = 3 \cos x \sin y$, express tan x in terms of tan y.

Solution:

As sin $x \cos y = 3 \cos x \sin y$

 $s_{0} \frac{\sin x \cos y}{\cos x \cos y} = 3 \frac{\cos x \sin y}{\cos x \cos y}$

So $\tan x = 3 \tan y$

Trigonometrical identities and simple equations Exercise A, Question 4

Question:

Express in terms of $\sin \theta$ only:

(a) $\cos^2 \theta$

(b) $\tan^2 \theta$

(c) $\cos \theta \tan \theta$

(d) $\frac{\cos \theta}{\tan \theta}$

(e) $(\cos \theta - \sin \theta) (\cos \theta + \sin \theta)$

Solution:

(a) As $\sin^2 \theta + \cos^2 \theta \equiv 1$ So $\cos^2 \theta \equiv 1 - \sin^2 \theta$

(b) $\tan^2 \theta \equiv \frac{\sin^2 \theta}{\cos^2 \theta} \equiv \frac{\sin^2 \theta}{1 - \sin^2 \theta}$

(c) $\cos \theta \tan \theta$

 $= \cos\theta \times \frac{\sin\theta}{\cos\theta}$

 $= \sin \theta$

(d)
$$\frac{\cos \theta}{\tan \theta} = \frac{\cos \theta}{\frac{\sin \theta}{\cos \theta}} = \cos \theta \times \frac{\cos \theta}{\sin \theta} = \frac{\cos^2 \theta}{\sin \theta}$$

So $\frac{\cos \theta}{\tan \theta} = \frac{1 - \sin^2 \theta}{\sin \theta}$ or $\frac{1}{\sin \theta} - \sin \theta$

(e) $(\cos \theta - \sin \theta) (\cos \theta + \sin \theta) = \cos^2 \theta - \sin^2 \theta = (1 - \sin^2 \theta) - \sin^2 \theta = 1 - 2\sin^2 \theta$ © Pearson Education Ltd 2008

Trigonometrical identities and simple equations Exercise A, Question 5

Question:

Using the identities $\sin^2 A + \cos^2 A \equiv 1$ and/or $\tan A \equiv \frac{\sin A}{\cos A} \left(\cos A \neq 0 \right)$, prove that:

(a) $(\sin \theta + \cos \theta)^2 \equiv 1 + 2 \sin \theta \cos \theta$

(b)
$$\frac{1}{\cos \theta} - \cos \theta \equiv \sin \theta \quad \tan \theta$$

(c) $\tan x + \frac{1}{\tan x} \equiv \frac{1}{\sin x \cos x}$

(d) $\cos^2 A - \sin^2 A \equiv 2 \cos^2 A - 1 \equiv 1 - 2 \sin^2 A$

(e) $(2 \sin \theta - \cos \theta)^2 + (\sin \theta + 2 \cos \theta)^2 \equiv 5$

(f) 2 - (sin θ - cos θ) ² = (sin θ + cos θ) ²

(g) $\sin^2 x \cos^2 y - \cos^2 x \sin^2 y = \sin^2 x - \sin^2 y$

Solution:

(a) LHS =
$$(\sin \theta + \cos \theta)^{2}$$

 $= \sin^{2} \theta + 2 \sin \theta \cos \theta + \cos^{2} \theta$
 $= (\sin^{2} \theta + \cos^{2} \theta) + 2 \sin \theta \cos \theta$
 $= 1 + 2 \sin \theta \cos \theta$
 $= RHS$
(b) LHS = $\frac{1}{\cos \theta} - \cos \theta$
 $= \frac{1 - \cos^{2} \theta}{\cos \theta}$
 $= \frac{\sin^{2} \theta}{\cos \theta}$
 $= \sin \theta \times \frac{\sin \theta}{\cos \theta}$
 $= \sin \theta \tan \theta$
 $= RHS$
(c) LHS = $\tan x^{\circ} + \frac{1}{\tan x^{\circ}}$
 $= \frac{\sin x^{\circ}}{\cos x^{\circ}} + \frac{\cos x^{\circ}}{\sin x^{\circ}}$
 $= \frac{\sin^{2} x^{\circ} + \cos^{2} x^{\circ}}{\sin x^{\circ} \cos x^{\circ}}$

1 = $\frac{1}{\sin x^{\circ} \cos x^{\circ}}$ = RHS(d) LHS = $\cos^2 A - \sin^2 A$ $\equiv \cos^2 \quad A - (1 - \cos^2 \quad A)$ $\equiv \cos^2 \quad A - 1 + \cos^2 \quad A$ $\equiv 2 \cos^2 A - 1 \checkmark$ $\equiv 2(1 - \sin^2 A) - 1$ $\equiv 2 - 2 \sin^2 A - 1$ $\equiv 1 - 2 \sin^2 A \checkmark$ (e) LHS = $(2 \sin \theta - \cos \theta)^2 + (\sin \theta + 2 \cos \theta)^2$ $\equiv 4 \sin^2 \theta - 4 \sin \theta \cos \theta + \cos^2 \theta + \sin^2 \theta + 4 \sin \theta \cos \theta + 4 \cos^2 \theta$ $\equiv 5 \sin^2 \theta + 5 \cos^2 \theta$ $\equiv 5 \; (\; \sin^2 \; \theta + \cos^2 \; \theta \;)$ ≡ 5 \equiv RHS (f) LHS $\equiv 2 - (\sin \theta - \cos \theta)^2$ $= 2 - (\sin^2 \theta - 2 \sin \theta \cos \theta + \cos^2 \theta)$ $= 2 - (1 - 2 \sin \theta \cos \theta)$ $= 1 + 2 \sin \theta \cos \theta$ $=\sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta$ = $(\sin \theta + \cos \theta)^2$ = RHS(g) LHS = $\sin^2 x \cos^2 y - \cos^2 x \sin^2 y$ $= \sin^2 x (1 - \sin^2 y) - (1 - \sin^2 x) \sin^2 y$ $= \sin^{2} x - \sin^{2} x \sin^{2} y - \sin^{2} y + \sin^{2} x \sin^{2} y$ $=\sin^2 x - \sin^2 y$ = RHS

Trigonometrical identities and simple equations Exercise A, Question 6

Question:

Find, without using your calculator, the values of:

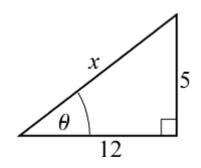
(a) sin θ and cos θ , given that tan $\theta = \frac{5}{12}$ and θ is acute.

(b) sin θ and tan θ , given that $\cos \theta = -\frac{3}{5}$ and θ is obtuse.

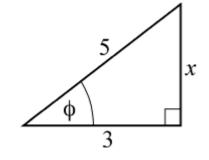
(c) cos θ and tan θ , given that sin $\theta = -\frac{7}{25}$ and 270 ° < θ < 360 °.

Solution:

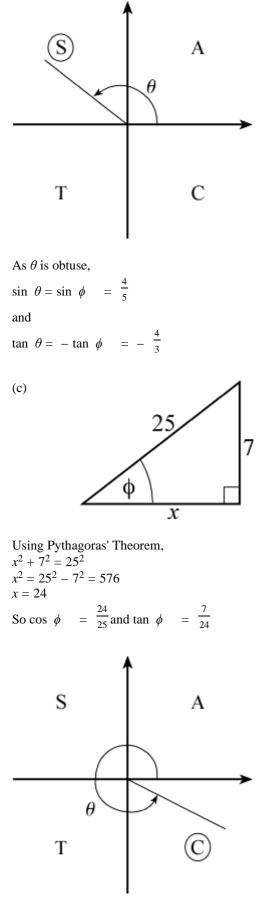
(a)



Using Pythagoras' Theorem, $x^2 = 12^2 + 5^2 = 169$ x = 13So sin $\theta = \frac{5}{13}$ and cos $\theta = \frac{12}{13}$



Using Pythagoras' Theorem, x = 4. So sin $\phi = \frac{4}{5}$ and tan $\phi = \frac{4}{3}$



As θ is in the 4th quadrant, $\cos \theta = +\cos \phi = + \frac{24}{25}$ and

$$\tan \theta = -\tan \phi = -\frac{7}{24}$$

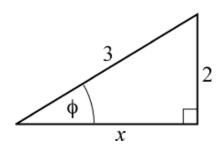
Trigonometrical identities and simple equations Exercise A, Question 7

Question:

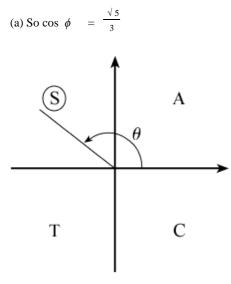
Given that sin $\theta = \frac{2}{3}$ and that θ is obtuse, find the exact value of: (a) cos θ , (b) tan θ .

Solution:

Consider the angle ϕ where sin $\phi = \frac{2}{3}$.



Using Pythagoras' Theorem, $x = \sqrt{5}$



As θ is obtuse, $\cos \theta = -\cos \phi = -\frac{\sqrt{5}}{3}$

(b) From the triangle, $\tan \phi = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$ Using the quadrant diagram, $\tan \theta = -\tan \phi = -\frac{2\sqrt{5}}{5}$

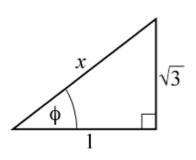
Trigonometrical identities and simple equations Exercise A, Question 8

Question:

Given that $\tan \theta = -\sqrt{3}$ and that θ is reflex, find the exact value of: (a) $\sin \theta$, (b) $\cos \theta$.

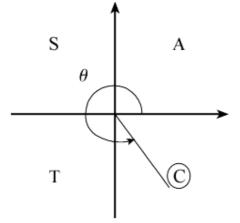
Solution:

Draw a right-angled triangle with tan $\phi = + \sqrt{3} = \frac{\sqrt{3}}{1}$



Using Pythagoras' Theorem, $x^2 = (\sqrt{3})^2 + 1^2 = 4$ So x = 2

(a) $\sin \phi = \frac{\sqrt{3}}{2}$



As θ is reflex and tan θ is - ve, θ is in the 4th quadrant. So sin $\theta = -\sin \phi = \frac{-\sqrt{3}}{2}$

(b) $\cos \phi = \frac{1}{2}$ As $\cos \theta = \cos \phi$, $\cos \theta = \frac{1}{2}$

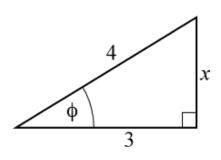
Trigonometrical identities and simple equations Exercise A, Question 9

Question:

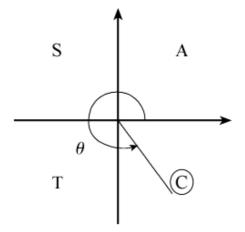
Given that $\cos \theta = \frac{3}{4}$ and that θ is reflex, find the exact value of: (a) $\sin \theta$, (b) $\tan \theta$.

Solution:

Draw a right-angled triangle with $\cos \phi = \frac{3}{4}$



Using Pythagoras' Theorem, $x^2 + 3^2 = 4^2$ $x^2 = 4^2 - 3^2 = 7$ $x = \sqrt{7}$ So sin $\phi = \frac{\sqrt{7}}{4}$ and tan $\phi = \frac{\sqrt{7}}{3}$



As θ is reflex and $\cos \theta$ is +ve, θ is in the 4th quadrant.

(a) $\sin \theta = -\sin \phi = -\frac{\sqrt{7}}{4}$ (b) $\tan \theta = -\tan \phi = -\frac{\sqrt{7}}{3}$

Trigonometrical identities and simple equations Exercise A, Question 10

Question:

In each of the following, eliminate θ to give an equation relating *x* and *y*:

(a) $x = \sin \theta$, $y = \cos \theta$

(b) $x = \sin \theta$, $y = 2 \cos \theta$

(c) $x = \sin \theta$, $y = \cos^2 \theta$

(d) $x = \sin \theta$, $y = \tan \theta$

(e) $x = \sin \theta + \cos \theta$, $y = \cos \theta - \sin \theta$

Solution:

(a) As
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$

 $x^2 + y^2 = 1$

(b) $\sin \theta = x$ and $\cos \theta = \frac{y}{2}$ So, using $\sin^2 \theta + \cos^2 \theta \equiv 1$ $x^2 + \left(\frac{y}{2}\right)^2 = 1$ or $x^2 + \frac{y^2}{4} = 1$ or $4x^2 + y^2 = 4$

```
(c) As \sin \theta = x, \sin^2 \theta = x^2
Using \sin^2 \theta + \cos^2 \theta \equiv 1
x^2 + y = 1
```

(d) As $\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\cos \theta = \frac{\sin \theta}{\tan \theta}$ So $\cos \theta = \frac{x}{y}$

Using sin² θ + cos² $\theta \equiv 1$ $x^{2} + \frac{x^{2}}{y^{2}} = 1$ or $x^{2}y^{2} + x^{2} = y^{2}$

(e) $\sin \theta + \cos \theta = x$ $-\sin \theta + \cos \theta = y$ Adding up the two equations: $2 \cos \theta = x + y$ So $\cos \theta = \frac{x+y}{2}$ Subtracting the two equations: $2 \sin \theta = x - y$ So $\sin \theta = \frac{x-y}{2}$ Using $\sin^2 \theta + \cos^2 \theta \equiv 1$

$$\left(\frac{x-y}{2}\right)^2 + \left(\frac{x+y}{2}\right)^2 = 1$$
$$x^2 - 2xy + y^2 + x^2 + 2xy + y^2 = 4$$
$$2x^2 + 2y^2 = 4$$
$$x^2 + y^2 = 2$$

Trigonometrical identities and simple equations Exercise B, Question 1

Question:

Solve the following equations for θ , in the interval $0 < \theta \leq 360^{\circ}$:

- (a) sin $\theta = -1$ (b) tan $\theta = \sqrt{3}$
- (c) $\cos \theta = \frac{1}{2}$
- (d) sin $\theta = \sin 15^{\circ}$
- (e) $\cos \theta = -\cos 40^{\circ}$
- (f) $\tan \theta = -1$
- (g) $\cos \theta = 0$
- (h) sin $\theta = -0.766$
- (i) 7 sin $\theta = 5$
- (j) 2 cos $\theta = -\sqrt{2}$
- (k) $\sqrt{3} \sin \theta = \cos \theta$
- (1) $\sin \theta + \cos \theta = 0$
- (m) 3 cos $\theta = -2$
- (n) (sin $\theta 1$) (5 cos $\theta + 3$) = 0
- (o) $\tan \theta = \tan \theta (2 + 3 \sin \theta)$

Solution:

(a) Using the graph of $y = \sin \theta$ sin $\theta = -1$ when $\theta = 270^{\circ}$

(b) $\tan \theta = \sqrt{3}$ The calculator solution is 60 ° ($\tan^{-1} \sqrt{3}$) and, as $\tan \theta$ is +ve, θ lies in the 1st and 3rd quadrants. $\theta = 60^{\circ}$ and ($180^{\circ} + 60^{\circ}$) = 60° , 240 °

(c) $\cos \theta = \frac{1}{2}$

Calculator solution is 60° and as cos θ is +ve, θ lies in the 1st and 4th quadrants. $\theta = 60^{\circ}$ and (360° - 60°) = 60°, 300°

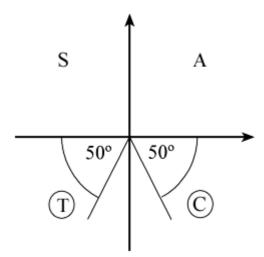
(d) sin $\theta = \sin 15^{\circ}$ The acute angle satisfying the equation is $\theta = 15^{\circ}$. As sin θ is +ve, θ lies in the 1st and 2nd quadrants, so $\theta = 15~^\circ$ and ($180~^\circ~-15~^\circ~$) $= 15~^\circ~, 165^\circ$

(e) A first solution is $\cos^{-1}(-\cos 40^{\circ}) = 140^{\circ}$ A second solution of $\cos \theta = k$ is $360^{\circ} - 1$ st solution. So second solution is 220° (Use the quadrant diagram as a check.)

(f) A first solution is tan $^{-1}(-1) = -45^{\circ}$ Use the quadrant diagram, noting that as tan is - ve, solutions are in the 2nd and 4th quadrants. $(-45^{\circ}$ is not in the given interval) So solutions are 135° and 315°.

(g) From the graph of $y = \cos \theta$ cos $\theta = 0$ when $\theta = 90^{\circ}$, 270°

(h) The calculator solution is -50.0° (3 s.f.) As sin θ is - ve, θ lies in the 3rd and 4th quadrants.



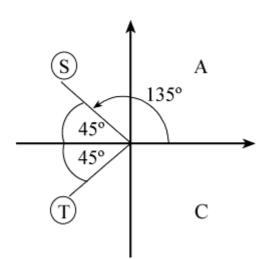
Solutions are 230° and 310°. [These are 180 ° + α and 360 ° - α where $\alpha = \cos^{-1}(-0.766)$]

(i) sin $\theta = \frac{5}{7}$

First solution is $\sin^{-1} \left(\frac{5}{7} \right) = 45.6^{\circ}$ Second solution is 180° - 45.6° = 134.4°

(j) cos $\theta = -\frac{\sqrt{2}}{2}$

Calculator solution is 135° As $\cos \theta$ is - ve, θ is in the 2nd and 3rd quadrants.



Solutions are 135° and 225° (135° and 360 $^\circ~-$ 135 $^\circ$)

(k) $\sqrt{3} \sin \theta = \cos \theta$ So $\tan \theta = \frac{1}{\sqrt{3}}$ dividing both sides by $\sqrt{3} \cos \theta$

Calculator solution is 30° As tan θ is +ve, θ is in the 1st and 3rd quadrants. Solutions are 30° , 210° (30° and $180^{\circ} + 30^{\circ}$)

(1) $\sin \theta + \cos \theta = 0$ So $\sin \theta = -\cos \theta \Rightarrow \tan \theta = -1$ Calculator solution (-45°) is not in given interval As $\tan \theta$ is $- \operatorname{ve}, \theta$ is in the 2nd and 4th quadrants. Solutions are 135° and 315° $[180^{\circ} + \tan^{-1} (-1), 360^{\circ} + \tan^{-1} (-1)]$

(m) Calculator solution is $\cos^{-1} \left(-\frac{2}{3} \right) = 131.8 \circ (1 \text{ d.p.})$ Second solution is 360 ° - 131.8 ° = 228.2 °

(n) As $(\sin \theta - 1) (5 \cos \theta + 3) = 0$ either sin $\theta - 1 = 0$ or $5 \cos \theta + 3 = 0$ So sin $\theta = 1$ or cos $\theta = -\frac{3}{5}$

Use the graph of $y = \sin \theta$ to read off solutions of $\sin \theta = 1$

 $\sin \theta = 1 \quad \Rightarrow \quad \theta = 90^{\circ}$

For $\cos \theta = -\frac{3}{5}$,

calculator solution is $\cos^{-1}\left(\begin{array}{c} -\frac{3}{5}\end{array}\right) = 126.9^{\circ}$

second solution is $360^{\circ} - 126.9^{\circ} = 233.1^{\circ}$ Solutions are 90° , 126.9° , 233.1°

(o) Rearrange as $\tan \theta (2+3 \sin \theta) - \tan \theta = 0$ $\tan \theta [(2+3 \sin \theta) - 1] = 0$ factorising $\tan \theta (3 \sin \theta + 1) = 0$ So $\tan \theta = 0$ or $\sin \theta = -\frac{1}{3}$

From graph of $y = \tan \theta$, $\tan \theta = 0 \Rightarrow \theta = 180^{\circ}$, 360° (0° not in given interval)

For sin $\theta = -\frac{1}{3}$, calculator solution (-19.5 °) is not in interval.

Solutions are $180^{\circ} - \sin^{-1} \left(-\frac{1}{3} \right)$ and $360^{\circ} + \sin^{-1} \left(-\frac{1}{3} \right)$ or use quadrant diagram.

Complete set of solutions 180°, 199.5°, 340.5°, 360°

Trigonometrical identities and simple equations Exercise B, Question 2

Question:

Solve the following equations for x, giving your answers to 3 significant figures where appropriate, in the intervals indicated:

(a) sin $x^{\circ} = -\frac{\sqrt{3}}{2}, -180 \leq x \leq 540$

(b) 2 sin $x^{\circ} = -0.3, -180 \leq x \leq 180$

(c) $\cos x^{\circ} = -0.809, -180 \leq x \leq 180$

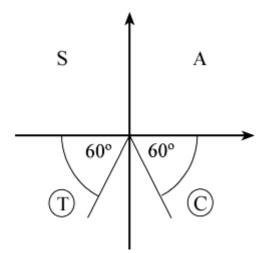
(d) cos $x^{\circ} = 0.84, -360 < x < 0$

(e) $\tan x^{\circ} = -\frac{\sqrt{3}}{3}, 0 \leq x \leq 720$

(f) $\tan x^{\circ} = 2.90, 80 \leq x \leq 440$

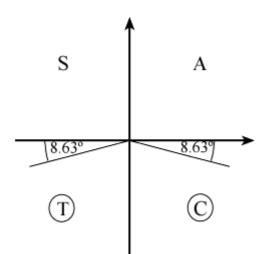
Solution:

(a) Calculator solution of sin $x^{\circ} = -\frac{\sqrt{3}}{2}$ is x = -60As sin x° is -ve, x is in the 3rd and 4th quadrants.



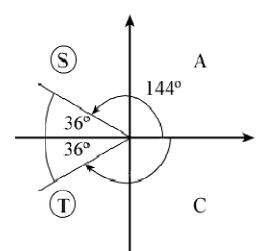
Read off all solutions in the interval $-180 \le x \le 540$ x = -120, -60, 240, 300

(b) 2 sin $x^{\circ} = -0.3$ sin $x^{\circ} = -0.15$ First solution is $x = \sin^{-1}(-0.15) = -8.63$ (3 s.f.) As sin x° is -ve, x is in the 3rd and 4th quadrants.



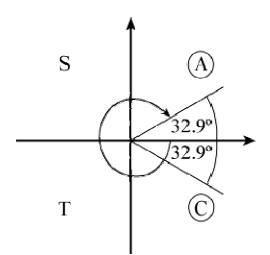
Read off all solutions in the interval $-180 \le x \le 180$ x = -171.37, -8.63 = -171, -8.63 (3 s.f.)

(c) $\cos x^{\circ} = -0.809$ Calculator solution is 144 (3 s.f.) As $\cos x^{\circ}$ is - ve, x is in the 2nd and 3rd quadrants.



Read off all solutions in the interval $-180 \le x \le 180$ x = -144, +144[*Note:* Here solutions are \cos^{-1} (-0.809) and { $360 - \cos^{-1}$ (-0.809) { -360]

(d) cos $x \circ = 0.84$ Calculator solution is 32.9 (3 s.f.) (not in interval) As cos $x \circ$ is +ve, x is in the 1st and 4th quadrants.



Read off all solutions in the interval -360 < x < 0 x = -327, -32.9 (3 s.f.)[*Note:* Here solutions are \cos^{-1} (0.84) -360 and { $360 - \cos^{-1}$ (0.84) { -360]

(e) $\tan x^{\circ} = -\frac{\sqrt{3}}{3}$

Calculator solution is $\tan^{-1} \left(-\frac{\sqrt{3}}{3} \right) = -30$ (not in interval)

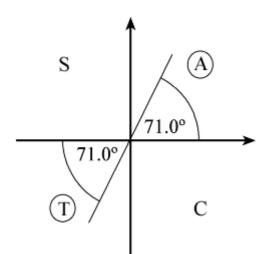
As tan $x \circ is - ve$, x is in the 2nd and 4th quadrants.



Read off all solutions in the interval $0 \le x \le 720$ x = 150, 330, 510, 690

[*Note:* Here solutions are $\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) + 180$, $\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) + 360$, $\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) + 540$, $\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) + 720$]

(f) tan $x^{\circ} = 2.90$ Calculator solution is tan⁻¹ (2.90) = 71.0 (3 s.f.) (not in interval) As tan x° is +ve, x is in the 1st and 3rd quadrants.



Read off all solutions in the interval $80 \le x \le 440$ x = 251, 431 [*Note:* Here solutions are tan ⁻¹ (2.90) + 180, tan ⁻¹ (2.90) + 360]

Trigonometrical identities and simple equations Exercise B, Question 3

Question:

Solve, in the intervals indicated, the following equations for θ , where θ is measured in radians. Give your answer in terms of π or 2 decimal places.

(a) $\sin \theta = 0$, $-2\pi < \theta \leq 2\pi$ (b) $\cos \theta = -\frac{1}{2}$, $-2\pi < \theta \leq \pi$

(c) $\sin \theta = \frac{1}{\sqrt{2}}, -2\pi < \theta \leq \pi$

(d) sin $\theta = \tan \theta$, $0 < \theta \le 2\pi$

(e) 2 (1 + tan θ) = 1 - 5 tan θ , $-\pi < \theta \leq 2\pi$

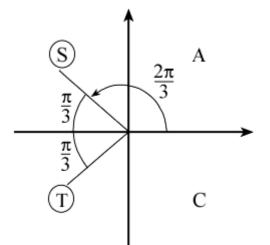
(f) 2 cos $\theta = 3$ sin θ , $0 < \theta \leq 2\pi$

Solution:

(a) Use your graph of $y = \sin \theta$ to read off values of θ for which $\sin \theta = 0$. In the interval $-2\pi < \theta \leq 2\pi$, solutions are $-\pi$, 0, π , 2π .

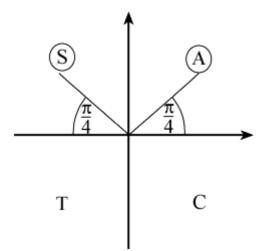
(b) Calculator solution of $\cos \theta = -\frac{1}{2} \operatorname{is} \cos^{-1} \left(-\frac{1}{2} \right) = 2.09 \text{ radians}$ [You should know that $\cos^{-1} \left(-\frac{1}{2} \right) = \frac{2\pi}{3}$]

As $\cos \theta$ is - ve, θ is in 2nd and 3rd quadrants.



Read off all solutions in the interval $-2\pi < \theta \leq \pi$ $\theta = -\frac{4\pi}{3}, -\frac{2\pi}{3}, \frac{2\pi}{3}$ (-4.19, -2.09, +2.09) (c) Calculator solution of sin $\theta = \frac{1}{\sqrt{2}}$ is sin⁻¹ $\left(\frac{1}{\sqrt{2}}\right) = 0.79$ radians or $\frac{\pi}{4}$

As sin θ is +ve, θ is in the 1st and 2nd quadrants.

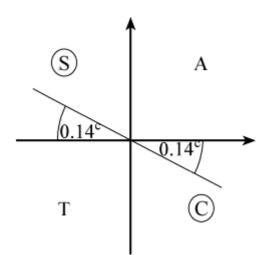


Read off all solutions in the interval $-2\pi < \theta \le \pi$ $\theta = -\frac{7\pi}{4}, -\frac{5\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}$ (d) $\sin \theta = \tan \theta$ $\sin \theta = \frac{\sin \theta}{\cos \theta}$ (multiply through by $\cos \theta$) $\sin \theta \cos \theta = \sin \theta$ $\sin \theta \cos \theta - \sin \theta = 0$ $\sin \theta (\cos \theta - 1) = 0$ So $\sin \theta = 0$ or $\cos \theta = 1$ for $0 < \theta \le 2\pi$ From the graph if $y = \sin \theta$, $\sin \theta = 0$ where $\theta = \pi, 2\pi$ From the graph of $y = \cos \theta$, $\cos \theta = 1$ where $\theta = 2\pi$

So solutions are π , 2π (e) 2 (1 + tan θ) = 1 - 5 tan θ \Rightarrow 2 + 2 tan θ = 1 - 5 tan θ \Rightarrow 7 tan θ = -1 \Rightarrow tan θ = $-\frac{1}{7}$

Calculator solution is $\theta = \tan^{-1} \left(-\frac{1}{7} \right) = -0.14$ radians (2 d.p.)

As $\tan \theta$ is - ve, θ is in the 2nd and 4th quadrants.



Read off all solutions in the interval $-\pi < \theta \leq 2\pi$

Read off all solutions in the interval
$$-\pi < \theta \le 2\pi$$

 $\theta = -0.14, 3.00, 6.14 \begin{bmatrix} \tan^{-1} \left(-\frac{1}{7} \right), \tan^{-1} \left(-\frac{1}{7} \right) + \pi, \tan^{-1} \left(-\frac{1}{7} \right) + 2\pi \end{bmatrix}$

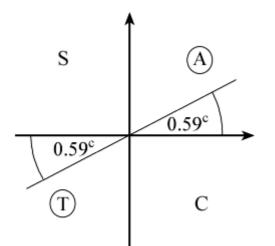
(f) As 2 cos $\theta = 3 \sin \theta$

$$\frac{2\cos\theta}{3\cos\theta} = \frac{3\sin\theta}{3\cos\theta}$$

So $\tan \theta = \frac{2}{3}$

Calculator solution is $\theta = \tan^{-1} \left(\begin{array}{c} \frac{2}{3} \end{array} \right) = 0.59$ radians (2 d.p.)

As tan θ is +ve, θ is in the 1st and 3rd quadrants.



Read off all solutions in the interval $0 < \theta \leq 2\pi$ $\begin{pmatrix} 2\\ 3 \end{pmatrix}$, $\tan^{-1}\begin{pmatrix} 2\\ 3 \end{pmatrix} + \pi$ tan ^{- 1} $\theta = 0.59, 3.73$

Trigonometrical identities and simple equations Exercise C, Question 1

Question:

Find the values of θ , in the interval $0 \leq \theta \leq 360^{\circ}$, for which:

- (a) $\sin 4\theta = 0$
- (b) $\cos 3\theta = -1$
- (c) $\tan 2\theta = 1$
- (d) $\cos 2\theta = \frac{1}{2}$
- (e) $\tan \frac{1}{2}\theta = -\frac{1}{\sqrt{3}}$

(f) sin
$$\left(\begin{array}{c} -\theta \end{array} \right) = \frac{1}{\sqrt{2}}$$

- (g) tan (45 ° $-\theta$) = -1
- (h) 2 sin ($\theta 20^{\circ}$) = 1
- (i) tan (θ + 75 °) = $\sqrt{3}$
- (j) cos (50 ° + 2 θ) = -1

Solution:

(a) $\sin 4\theta = 0$ $0 \le \theta \le 360^{\circ}$ Let $X = 4\theta \ge 0 \le X \le 1440^{\circ}$ Solve $\sin X = 0$ in the interval $0 \le X \le 1440^{\circ}$ From the graph of $y = \sin X$, $\sin X = 0$ where $X = 0, 180^{\circ}, 360^{\circ}, 540^{\circ}, 720^{\circ}, 900^{\circ}, 1080^{\circ}, 1260^{\circ}, 1440^{\circ}$ $\theta = \frac{X}{4} = 0, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 270^{\circ}, 315^{\circ}, 360^{\circ}$

(b) $\cos 3\theta = -1$ $0 \le \theta \le 360^{\circ}$ Let $X = 3\theta \ge 0 \le X \le 1080^{\circ}$ Solve $\cos X = -1$ in the interval $0 \le X \le 1080^{\circ}$ From the graph of $y = \cos X$, $\cos X = -1$ where $X = 180^{\circ}$, 540° , 900° $\theta = \frac{X}{3} = 60^{\circ}$, 180° , 300°

(c) $\tan 2\theta = 1$ $0 \le \theta \le 360^{\circ}$ Let $X = 2\theta$ Solve $\tan X = 1$ in the interval $0 \le X \le 720^{\circ}$ A solution is $X = \tan^{-1} 1 = 45^{\circ}$ As $\tan X$ is +ve, X is in the 1st and 3rd quadrants. So $X = 45^{\circ}$, 225°, 405°, 585°

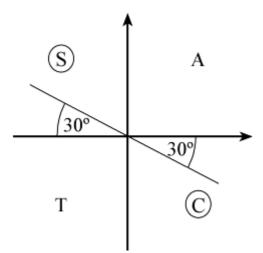
$$\theta = \frac{x}{2} = 22 \frac{1}{2} \circ, 112 \frac{1}{2} \circ, 202 \frac{1}{2} \circ, 292 \frac{1}{2} \circ$$
(d) $\cos 2\theta = \frac{1}{2} \quad 0 \leq \theta \leq 360 \circ$
Let $X = 2\theta$
Solve $\cos X = \frac{1}{2}$ in the interval $0 \leq X \leq 720 \circ$
A solution is $X = \cos^{-1} \left(\frac{1}{2}\right) = 60 \circ$
As $\cos X$ is +ve, X is in the 1st and 4th quadrants.
So $X = 60^\circ, 300^\circ, 420^\circ, 660^\circ$
 $\theta = \frac{X}{2} = 30^\circ, 150^\circ, 210^\circ, 330^\circ$

(e) $\tan \frac{1}{2}\theta = -\frac{1}{\sqrt{3}} \quad 0 \leq \theta \leq 360^{\circ}$ Let $X = \frac{1}{2}\theta$

Solve tan $X = -\frac{1}{\sqrt{3}}$ in the interval $0 \le X \le 180^{\circ}$

A solution is $X = \tan^{-1} \left(-\frac{1}{\sqrt{3}} \right) = -30^{\circ}$ (not in interval)

As tan X is - ve, X is in the 2nd and 4th quadrants.



Read off solutions in the interval $0 \le X \le 180^{\circ}$ $X = 150^{\circ}$ So $\theta = 2X = 300^{\circ}$

(f) sin
$$\begin{pmatrix} -\theta \end{pmatrix} = \frac{1}{\sqrt{2}} \quad 0 \leq \theta \leq 360^{\circ}$$

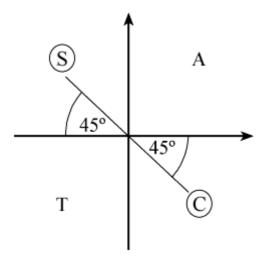
Let $X = -\theta$

Solve sin $X = \frac{1}{\sqrt{2}}$ in the interval $0 \ge X \ge -360^{\circ}$

A solution is $X = \sin^{-1} \left(\frac{1}{\sqrt{2}} \right) = 45^{\circ}$

As sin X is +ve, X is in the 1st and 2nd quadrants. $X = -315^{\circ}$, -225° So $\theta = -X = 225^{\circ}, 315^{\circ}$

(g) tan $(45^{\circ} - \theta) = -1$ $0 \le \theta \le 360^{\circ}$ Let $X = 45^{\circ} - \theta$ so $0 \ge -\theta \ge -360^{\circ}$ Solve tan X = -1 in the interval $45^{\circ} \ge X \ge -315^{\circ}$ A solution is $X = \tan^{-1}(-1) = -45^{\circ}$ As tan X is -ve, X is in the 2nd and 4th quadrants.



$$X = -225^{\circ}, -45^{\circ}$$

So $\theta = 45^{\circ} - X = 90^{\circ}, 270^{\circ}$

(h) 2 sin
$$(\theta - 20^\circ) = 1$$
 so sin $\left(\theta - 20^\circ\right) = \frac{1}{2} \quad 0 \leq \theta \leq 360^\circ$

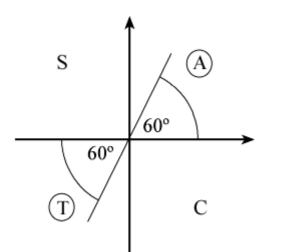
Let $X = \theta - 20^{\circ}$

Solve sin $X = \frac{1}{2}$ in the interval $-20^{\circ} \le X \le 340^{\circ}$

A solution is
$$X = \sin^{-1} \left(\begin{array}{c} \frac{1}{2} \end{array} \right) = 30^{\circ}$$

As sin X is +ve, solutions are in the 1st and 2nd quadrants. $X = 30^{\circ}, 150^{\circ}$ So $\theta = X + 20^{\circ} = 50^{\circ}, 170^{\circ}$

(i) Solve $\tan X = \sqrt{3}$ where $X = (\theta + 75^{\circ})$ Interval for X is 75° $\leq X \leq 435^{\circ}$ One solution is $\tan^{-1}(\sqrt{3}) = 60^{\circ}$ (not in the interval) As $\tan X$ is +ve, X is in the 1st and 3rd quadrants.



 $X = 240^{\circ}, 420^{\circ}$ So $\theta = X - 75^{\circ} = 165^{\circ}, 345^{\circ}$

(j) Solve $\cos X = -1$ where $X = (50^{\circ} + 2\theta)$ Interval for X is $50^{\circ} \le X \le 770^{\circ}$ From the graph of $y = \cos X$, $\cos X = -1$ where $X = 180^{\circ}$, 540° So $2\theta + 50^{\circ} = 180^{\circ}$, 540° $2\theta = 130^{\circ}$, 490° $\theta = 65^{\circ}$, 245°

Trigonometrical identities and simple equations Exercise C, Question 2

Question:

Solve each of the following equations, in the interval given. Give your answers to 3 significant figures where appropriate.

(a) sin
$$\left(\theta - 10^{\circ} \right) = -\frac{\sqrt{3}}{2}, 0 < \theta \leq 360^{\circ}$$

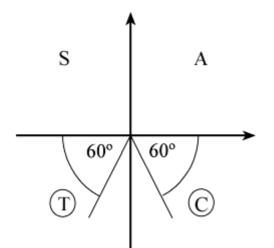
(b) cos (70 - x) ° = 0.6, -180 < x \leq 180

(c) tan $(3x + 25)^{\circ} = -0.51, -90 < x \leq -180$

(d) 5 sin $4\theta + 1 = 0$, $-90^{\circ} \le \theta \le 90^{\circ}$

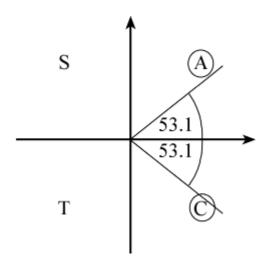
Solution:

(a) Solve sin $X = -\frac{\sqrt{3}}{2}$ where $X = (\theta - 10^{\circ})$ Interval for X is $-10^{\circ} < X \leq 350^{\circ}$ First solution is sin $^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -60^{\circ}$ (not in interval) As sin X is - ve, X is in the 3rd and 4th quadrants.



Read off solutions in the interval $-10^{\circ} < X \leq 350^{\circ}$ $X = 240^{\circ}, 300^{\circ}$ So $\theta = X + 10^{\circ} = 250^{\circ}, 310^{\circ}$

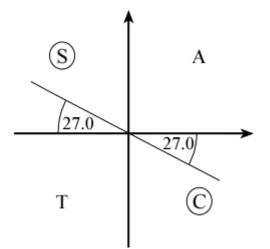
(b) Solve $\cos X^{\circ} = 0.6$ where X = (70 - x)Interval for X is $180 + 70 > X \ge -180 + 70$ i.e. $-110 \le X < 250$ First solution is $\cos^{-1} (0.6) = 53.1^{\circ}$ As $\cos X^{\circ}$ is +ve, X is in the 1st and 4th quadrants.



$$X = -53.1, +53.1$$

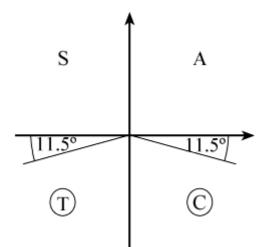
So $x = 70 - X = 16.9, 123$ (3 s.f.)

(c) Solve tan $X^{\circ} = -0.51$ where X = 3x + 25Interval for x is $-90 < x \le 180$ So interval for X is $-245 < X \le 565$ First solution is tan⁻¹ (-0.51) = -27.0As tan X is - ve, X is in the 2nd and 4th quadrants.



Read off solutions in the interval $-245 < X \le 565$ X = -207, -27, 153, 333, 513 3x + 25 = -207, -27, 153, 333, 513 3x = -232, -52, 128, 308, 488So x = -77.3, -17.3, 42.7, 103, 163

(d) $5 \sin 4\theta + 1 = 0$ $5 \sin 4\theta = -1$ $\sin 4\theta = -0.2$ Solve $\sin X = -0.2$ where $X = 4\theta$ Interval for X is $-360^{\circ} \le X \le 360^{\circ}$ First solution is $\sin^{-1}(-0.2) = -11.5^{\circ}$ As $\sin X$ is - ve, X is in the 3rd and 4th quadrants.



Read off solutions in the interval $-360^{\circ} \le X \le 360^{\circ}$ $X = -168.5^{\circ}, -11.5^{\circ}, 191.5^{\circ}, 348.5^{\circ}$ So $\theta = \frac{X}{4} = -42.1^{\circ}, -2.88^{\circ}, 47.9^{\circ}, 87.1^{\circ}$

Trigonometrical identities and simple equations Exercise C, Question 3

Question:

Solve the following equations for θ , in the intervals indicated. Give your answers in radians.

(a) sin
$$\left(\theta - \frac{\pi}{6} \right) = -\frac{1}{\sqrt{2}}, -\pi < \theta \leq \pi$$

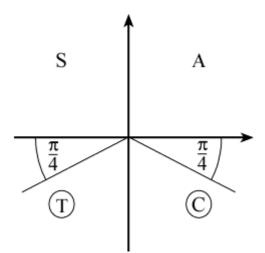
(b) cos $(2\theta + 0.2^{c}) = -0.2, -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$

(c)
$$\tan \left(2\theta + \frac{\pi}{4} \right) = 1, 0 \leq \theta \leq 2\pi$$

(d) sin
$$\left(\theta + \frac{\pi}{3} \right) = \tan \frac{\pi}{6}, 0 \leq \theta \leq 2\pi$$

Solution:

(a) Solve sin $X = -\frac{1}{\sqrt{2}}$ where $X = \theta - \frac{\pi}{6}$ Interval for X is $-\frac{7\pi}{6} \le X \le \frac{5\pi}{6}$ First solution is $X = \sin^{-1} \left(-\frac{1}{\sqrt{2}} \right) = -\frac{\pi}{4}$ As sin X is - ve, X is in the 3rd and 4th quadrants.

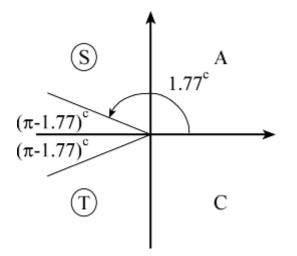


Read off solutions for X in the interval $-\frac{7\pi}{6} \leq X \leq \frac{5\pi}{6}$

$$X = -\frac{3\pi}{4}, -\frac{\pi}{4}$$

So $\theta = X + \frac{\pi}{6} = \frac{\pi}{6} - \frac{3\pi}{4}, \frac{\pi}{6} - \frac{\pi}{4} = -\frac{7\pi}{12}, -\frac{\pi}{12}$

(b) Solve $\cos X = -0.2$ where $X = 2\theta + 0.2$ radians Interval for X is $-\pi + 0.2 \leq X \leq \pi + 0.2$ i.e. $-2.94 \leq X \leq 3.34$ First solution is $X = \cos^{-1} (-0.2) = 1.77$... radians As $\cos X$ is - ve, X is in the 2nd and 3rd quadrants.



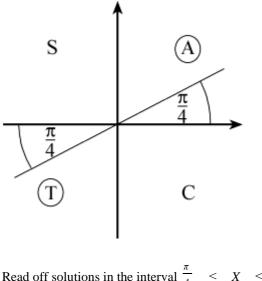
Read off solutions for X in the interval $-2.94 \le X \le 3.34$ X = -1.77, +1.77 radians $2\theta + 0.2 = -1.77, +1.77$ $2\theta = -1.97, +1.57$ So $\theta = -0.986, 0.786$

(c) Solve $\tan X = 1$ where $X = 2\theta + \frac{\pi}{4}$

Interval for X is $\frac{\pi}{4} \leq X \leq \frac{17\pi}{4}$

First solution is $X = \tan^{-1} 1 = \frac{\pi}{4}$

As tan is +ve, X is in the 1st and 3rd quadrants.

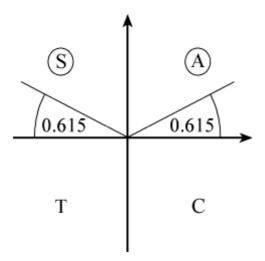


Read off solutions in the interval $\frac{\pi}{4} \leq X \leq \frac{17\pi}{4}$ $X = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}, \frac{17\pi}{4}$

$$2\theta + \frac{\pi}{4} = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}, \frac{17\pi}{4}$$

$$2\theta = 0, \pi, 2\pi, 3\pi, 4\pi$$
So $\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$
(d) Solve sin $X = -\frac{\sqrt{3}}{3}$ where $X = \theta + -\frac{\pi}{3}$
Interval for X is $\frac{\pi}{3} \le X \le -\frac{7\pi}{3}$ or 1.047 radians $\le X \le -7.33$ radians
First solution is $\sin^{-1} \left(-\frac{\sqrt{3}}{3} \right) = 0.615$

As $\sin X$ is +ve, X is in the 1st and 2nd quadrants.



 $X = \pi - 0.615, 2\pi + 0.615 = 2.526, 6.899$ So $\theta = X - \frac{\pi}{3} = 1.48, 5.85$

Trigonometrical identities and simple equations Exercise D, Question 1

Question:

Solve for θ , in the interval $0 \le \theta \le 360^\circ$, the following equations. Give your answers to 3 significant figures where they are not exact.

- (a) 4 $\cos^2 \theta = 1$
- (b) $2 \sin^2 \theta 1 = 0$
- (c) $3 \sin^2 \theta + \sin \theta = 0$
- (d) $\tan^2 \theta 2 \tan \theta 10 = 0$
- (e) $2 \cos^2 \theta 5 \cos \theta + 2 = 0$
- (f) $\sin^2 \theta 2 \sin \theta 1 = 0$
- (g) $\tan^2 2\theta = 3$
- (h) 4 sin $\theta = \tan \theta$
- (i) $\sin \theta + 2 \cos^2 \theta + 1 = 0$
- (j) $\tan^2 (\theta 45^\circ) = 1$
- (k) $3 \sin^2 \theta = \sin \theta \cos \theta$
- (1) 4 cos θ (cos $\theta 1$) = -5 cos θ
- (m) 4 ($\sin^2 \theta \cos \theta$) = 3 2 $\cos \theta$
- (n) $2 \sin^2 \theta = 3 (1 \cos \theta)$
- (o) 4 $\cos^2 \theta 5 \sin \theta 5 = 0$
- (p) $\cos^2 \quad \frac{\theta}{2} = 1 + \sin \quad \frac{\theta}{2}$

Solution:

(a) $4 \cos^2 \theta = 1 \implies \cos^2 \theta = \frac{1}{4}$ So $\cos \theta = \pm \frac{1}{2}$ Solutions are 60°, 120°, 240°, 300°

(b) $2 \sin^2 \theta - 1 = 0 \Rightarrow \sin^2 \theta = \frac{1}{2}$

So sin $\theta = \pm \frac{1}{\sqrt{2}}$

Solutions are in all four quadrants at 45° to the horizontal. So $\theta = 45^{\circ}$, 135° , 225° , 315°

(c) Factorising, sin θ (3 sin θ + 1) = 0

So sin $\theta = 0$ or sin $\theta = -\frac{1}{3}$

Solutions of sin $\theta = 0$ are $\theta = 0^{\circ}$, 180°, 360° (from graph)

Solutions of sin $\theta = -\frac{1}{3}$ are $\theta = 199^{\circ}$, 341° (3 s.f.) (3rd and 4th quadrants)

(d) $\tan^2 \theta - 2 \tan \theta - 10 = 0$ So $\tan \theta = \frac{2 \pm \sqrt{4 + 40}}{2} = \frac{2 \pm \sqrt{44}}{2} (= -2.3166 \dots \text{ or } 4.3166 \dots)$ Solutions of $\tan \theta = \frac{2 - \sqrt{44}}{2}$ are in the 2nd and 4th quadrants. So $\theta = 113.35^\circ$, 293.3° Solutions of $\tan \theta = \frac{2 + \sqrt{44}}{2}$ are in the 1st and 3rd quadrants. So $\theta = 76.95 \dots \circ$, 256.95 $\dots \circ$ Solution set: 77.0°, 113°, 257°, 293°

(e) Factorise LHS of $2 \cos^2 \theta - 5 \cos \theta + 2 = 0$ ($2 \cos \theta - 1$) ($\cos \theta - 2$) = 0 So $2 \cos \theta - 1 = 0$ or $\cos \theta - 2 = 0$ As $\cos \theta \le 1$, $\cos \theta = 2$ has no solutions. Solutions of $\cos \theta = \frac{1}{2} \operatorname{are} \theta = 60^\circ$, 300°

(f) $\sin^2 \theta - 2 \sin \theta - 1 = 0$ So $\sin \theta = \frac{2 \pm \sqrt{8}}{2}$ Solve $\sin \theta = \frac{2 - \sqrt{8}}{2}$ as $\frac{2 + \sqrt{8}}{2} > 1$

 $\theta = 204^{\circ}, 336^{\circ}$ (solutions are in 3rd and 4th quadrants as $\frac{2 - \sqrt{8}}{2} < 0$)

(g) $\tan^2 2\theta = 3 \implies \tan 2\theta = \pm \sqrt{3}$ Solve $\tan X = +\sqrt{3}$ and $\tan X = -\sqrt{3}$, where $X = 2\theta$ Interval for X is $0 \le X \le 720^\circ$ For $\tan X = \sqrt{3}$, $X = 60^\circ$, 240° , 420° , 600° So $\theta = \frac{X}{2} = 30^\circ$, 120° , 210° , 300° For $\tan X = \sqrt{2}$, $X = 120^\circ$, 200° , 480° , 660°

For tan $X = -\sqrt{3}$, $X = 120^{\circ}$, 300° , 480° , 660° So $\theta = 60^{\circ}$, 150° , 240° , 330° Solution set: $\theta = 30^{\circ}$, 60° , 120° , 150° , 210° , 240° , 300° , 330°

(h) 4 sin θ = tan θ So 4 sin θ = $\frac{\sin \theta}{\cos \theta}$ \Rightarrow 4 sin $\theta \cos \theta$ = sin θ \Rightarrow 4 sin $\theta \cos \theta$ - sin θ = 0 \Rightarrow sin θ (4 cos θ - 1) = 0 So sin θ = 0 or cos θ = $\frac{1}{4}$

Solutions of sin $\theta = 0$ are 0°, 180°, 360° Solutions of $\cos \theta = \frac{1}{4} \operatorname{are} \cos^{-1} \left(\begin{array}{c} \frac{1}{4} \end{array} \right)$ and $360^{\circ} - \cos^{-1} \left(\begin{array}{c} \frac{1}{4} \end{array} \right)$ Solution set: 0°, 75.5°, 180°, 284°, 360° (i) $\sin \theta + 2 \cos^2 \theta + 1 = 0$ So sin $\theta + 2(1 - \sin^2 \theta) + 1 = 0$ using sin² $\theta + \cos^2 \theta \equiv 1$ \Rightarrow 2 sin² θ - sin θ - 3 = 0 $\Rightarrow (2 \sin \theta - 3) (\sin \theta + 1) = 0$ So sin $\theta = -1$ (sin $\theta = \frac{3}{2}$ has no solution) $\Rightarrow \theta = 270^{\circ}$ (j) $\tan^2 (\theta - 45^\circ) = 1$ So tan $(\theta - 45^{\circ}) = 1$ or tan $(\theta - 45^{\circ}) = -1$ So $\theta - 45^{\circ} = 45^{\circ}$, 225° (1st and 3rd quadrants) or $\theta - 45^{\circ} = -45^{\circ}$, 135°, 315° (2nd and 4th quadrants) $\Rightarrow \theta = 0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}$ (k) $3 \sin^2 \theta = \sin \theta \cos \theta$ $\Rightarrow 3 \sin^2 \theta - \sin \theta \cos \theta = 0$ $\Rightarrow \sin \theta (3 \sin \theta - \cos \theta) = 0$ So sin $\theta = 0$ or 3 sin $\theta - \cos \theta = 0$ Solutions of sin $\theta = 0$ are $\theta = 0^{\circ}$, 180°, 360° For 3 sin $\theta - \cos \theta = 0$ 3 sin $\theta = \cos \theta$ $\frac{\Im \sin \theta}{\Im \cos \theta} = \frac{\cos \theta 1}{\Im \cos \theta}$ $\tan \theta = \frac{1}{2}$ Solutions are $\theta = \tan^{-1} \left(\frac{1}{3} \right)$ and $180^{\circ} + \tan^{-1} \left(\frac{1}{3} \right) = 18.4^{\circ}$, 198° Solution set: 0°, 18.4°, 180°, 198°, 360° (1) 4 cos θ (cos $\theta - 1$) = -5 cos θ $\Rightarrow \cos \theta [4 (\cos \theta - 1) + 5] = 0$ $\Rightarrow \cos \theta (4 \cos \theta + 1) = 0$ So cos $\theta = 0$ or cos $\theta = -\frac{1}{4}$ Solutions of cos $\theta = 0$ are 90°, 270° Solutions of cos $\theta = -\frac{1}{4}$ are 104°, 256° (3 s.f.) (2nd and 3rd quadrants) Solution set: 90°, 104°, 256°, 270° (m) $4 \sin^2 \theta - 4 \cos \theta = 3 - 2 \cos \theta$ $\Rightarrow 4(1-\cos^2\theta) - 4\cos\theta = 3 - 2\cos\theta$ \Rightarrow 4 cos² θ + 2 cos θ - 1 = 0 So cos $\theta = \frac{-2 \pm \sqrt{20}}{8} \left(= \frac{-1 \pm \sqrt{5}}{4} \right)$

Page 4 of 4

Solutions of cos $\theta = \frac{-2 + \sqrt{20}}{8}$ are 72°, 288° (1st and 4th quadrants) Solutions of cos $\theta = \frac{-2 - \sqrt{20}}{8}$ are 144°, 216° (2nd and 3rd quadrants) Solution set: 72.0°, 144°, 216°, 288° (n) $2 \sin^2 \theta = 3 (1 - \cos \theta)$ \Rightarrow 2 (1 - cos² θ) = 3 (1 - cos θ) $\Rightarrow 2(1 - \cos \theta) (1 + \cos \theta) = 3(1 - \cos \theta) \text{ or write as } a \cos^2 \theta + b \cos \theta + c \equiv 0$ $\Rightarrow (1 - \cos \theta) [2(1 + \cos \theta) - 3] = 0$ $\Rightarrow (1 - \cos \theta) (2 \cos \theta - 1) = 0$ So cos $\theta = 1$ or cos $\theta = \frac{1}{2}$ Solutions are 0°, 60°, 300°, 360° (o) 4 $\cos^2 \theta - 5 \sin \theta - 5 = 0$ \Rightarrow 4 (1 - sin² θ) - 5 sin θ - 5 = 0 \Rightarrow 4 sin² θ + 5 sin θ + 1 = 0 $\Rightarrow (4 \sin \theta + 1) (\sin \theta + 1) = 0$ So sin $\theta = -1$ or sin $\theta = -\frac{1}{4}$ Solution of sin $\theta = -1$ is $\theta = 270^{\circ}$ Solutions of sin $\theta = -\frac{1}{4}$ are $\theta = 194^{\circ}$, 346° (3 s.f.) (3rd and 4th quadrants) Solution set: 194°, 270°, 346°

(p)
$$\cos^2 \frac{\theta}{2} = 1 + \sin \frac{\theta}{2}$$

$$\Rightarrow 1 - \sin^2 \frac{\theta}{2} = 1 + \sin \frac{\theta}{2}$$

$$\Rightarrow \sin^2 \frac{\theta}{2} + \sin \frac{\theta}{2} = 0$$

$$\Rightarrow \sin \frac{\theta}{2} \left(\sin \frac{\theta}{2} + 1 \right) = 0$$
So $\sin \frac{\theta}{2} = 0$ or $\sin \frac{\theta}{2} = -1$
Solve $\sin X = 0$ and $\sin X = -1$ where $X = \frac{\theta}{2}$
Interval for X is $0 \le X \le -180^\circ$

Interval for X is $0 \le X \le 180^{\circ}$ X = 0°, 180° (sin X = -1 has no solutions in the interval) So $\theta = 2X = 0^{\circ}$, 360°

Trigonometrical identities and simple equations Exercise D, Question 2

Question:

Solve for θ , in the interval $-180^\circ \leq \theta \leq 180^\circ$, the following equations. Give your answers to 3 significant figures where they are not exact.

(a) $\sin^2 2\theta = 1$

(b) $\tan^2 \theta = 2 \tan \theta$

(c) $\cos \theta (\cos \theta - 2) = 1$

(d) \sin^2 (θ + 10 °) = 0.8

(e) $\cos^2 3\theta - \cos 3\theta = 2$

(f) 5 $\sin^2 \theta = 4 \cos^2 \theta$

(g) $\tan \theta = \cos \theta$

(h) $2 \sin^2 \theta + 3 \cos \theta = 1$

Solution:

(a) Solve $\sin^2 X = 1$ where $X = 2\theta$ Interval for X is $-360^{\circ} \le X \le 360^{\circ}$ $\sin X = +1$ gives $X = -270^{\circ}$, 90° $\sin X = -1$ gives $X = -90^{\circ}$, $+270^{\circ}$ $X = -270^{\circ}$, -90° , $+90^{\circ}$, $+270^{\circ}$ So $\theta = \frac{X}{2} = -135^{\circ}$, -45° , $+45^{\circ}$, $+135^{\circ}$

(b) $\tan^2 \theta = 2 \tan \theta$ $\Rightarrow \tan^2 \theta - 2 \tan \theta = 0$

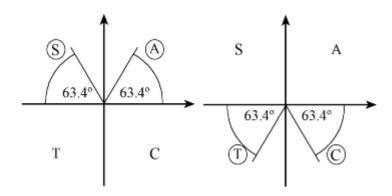
 $\Rightarrow \tan \theta (\tan \theta - 2) = 0$ So $\tan \theta = 0$ or $\tan \theta = 2$ (1st and 3rd quadrants) Solutions are $(-180^{\circ}, 0^{\circ}, 180^{\circ})$, $(-116.6^{\circ}, 63.4^{\circ})$ Solution set: $-180^{\circ}, -117^{\circ}, 0^{\circ}, 63.4^{\circ}, 180^{\circ}$

(c) $\cos^2 \theta - 2 \cos \theta = 1$ $\Rightarrow \cos^2 \theta - 2 \cos \theta - 1 = 0$ So $\cos \theta = \frac{2 \pm \sqrt{8}}{2}$

$$\Rightarrow \quad \cos \theta = \frac{2 - \sqrt{8}}{2} (\operatorname{as} \frac{2 + \sqrt{8}}{2} > 1)$$

Solutions are $~\pm~114$ $^{\circ}~$ (2nd and 3rd quadrants)

(d) $\sin^2 (\theta + 10^\circ) = 0.8$ $\Rightarrow \sin (\theta + 10^\circ) = +\sqrt{0.8} \text{ or } \sin (\theta + 10^\circ) = -\sqrt{0.8}$ Either $(\theta + 10^\circ) = 63.4^\circ$, 116.6° or $(\theta + 10^\circ) = -116.6^\circ$, -63.4°



So
$$\theta = -127^{\circ}$$
, -73.4° , 53.4° , 107° (3 s.f.)

(e) $\cos^2 3\theta - \cos 3\theta - 2 = 0$ ($\cos 3\theta - 2$) ($\cos 3\theta + 1$) = 0 So $\cos 3\theta = -1$ ($\cos 3\theta \neq 2$) Solve $\cos X = -1$ where $X = 3\theta$ Interval for X is $-540^\circ \le X \le 540^\circ$ From the graph of $y = \cos X$, $\cos X = -1$ where $X = -540^\circ$, -180° , 180° , 540° So $\theta = \frac{X}{3} = -180^\circ$, -60° , $+60^\circ$, $+180^\circ$

(f)
$$5 \sin^2 \theta = 4 \cos^2 \theta$$

 $\Rightarrow \tan^2 \theta = \frac{4}{5} \operatorname{as} \tan \theta = \frac{\sin \theta}{\cos \theta}$
So $\tan \theta = \pm \sqrt{\frac{4}{5}}$

There are solutions from each of the quadrants (angle to horizontal is 41.8°) $\theta=~\pm~138~^\circ$, $~\pm~41.8~^\circ$

(g)
$$\tan \theta = \cos \theta$$

 $\Rightarrow \frac{\sin \theta}{\cos \theta} = \cos \theta$
 $\Rightarrow \sin \theta = \cos^2 \theta$
 $\Rightarrow \sin \theta = 1 - \sin^2 \theta$
 $\Rightarrow \sin^2 \theta + \sin \theta - 1 = 0$
So $\sin \theta = \frac{-1 \pm \sqrt{5}}{2}$

Only solutions from sin $\theta = \frac{-1 + \sqrt{5}}{2} (as \frac{-1 - \sqrt{5}}{2} < -1)$

Solutions are $\theta = 38.2^{\circ}$, 142° (1st and 2nd quadrants)

(h)
$$2 \sin^2 \theta + 3 \cos \theta = 1$$

 $\Rightarrow 2(1 - \cos^2 \theta) + 3 \cos \theta = 1$
 $\Rightarrow 2 \cos^2 \theta - 3 \cos \theta - 1 = 0$
So $\cos \theta = \frac{3 \pm \sqrt{17}}{4}$

Only solutions of cos $\theta = \frac{3 - \sqrt{17}}{4}$ (as $\frac{3 + \sqrt{17}}{4} > 1$) Solutions are $\theta = \pm 106^{\circ}$ (2nd and 3rd quadrants)

Trigonometrical identities and simple equations Exercise D, Question 3

Question:

Solve for x, in the interval $0 \le x \le 2\pi$, the following equations.

Give your answers to 3 significant figures unless they can be written in the form $\frac{a}{b}\pi$, where a and b are integers.

(a) $\tan^2 \frac{1}{2}x = 1$

(b) $2 \sin^2 \left(x + \frac{\pi}{3} \right) = 1$

- (c) 3 tan $x = 2 \tan^2 x$
- (d) $\sin^2 x + 2 \sin x \cos x = 0$
- (e) $6 \sin^2 x + \cos x 4 = 0$
- (f) $\cos^2 x 6 \sin x = 5$

(g) $2 \sin^2 x = 3 \sin x \cos x + 2 \cos^2 x$

Solution:

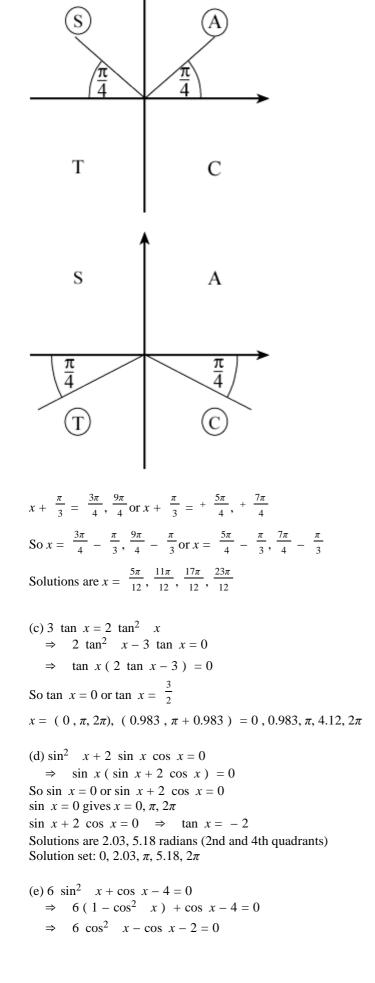
(a)
$$\tan^2 \frac{1}{2}x = 1$$

$$\Rightarrow \tan \frac{1}{2}x = \pm 1$$

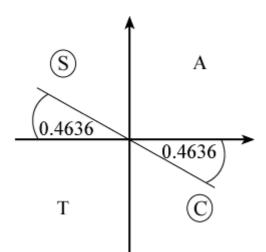
$$\Rightarrow \frac{1}{2}x = \frac{\pi}{4}, \frac{3\pi}{4} \qquad \left(\begin{array}{ccc} 0 & \leq & \frac{1}{2}x & \leq & \pi \end{array} \right)$$
So $x = \frac{\pi}{2}, \frac{3\pi}{2}$
(b) $2 \sin^2 \left(x + \frac{\pi}{3} \right) = 1$ for $\frac{\pi}{3} \leq x + \frac{\pi}{3} \leq \frac{7\pi}{3}$

$$\Rightarrow \sin^2 \left(x + \frac{\pi}{3} \right) = \frac{1}{2}$$

So sin $\left(x + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$ or sin $\left(x + \frac{\pi}{3}\right) = -\frac{1}{\sqrt{2}}$



 $\Rightarrow (3 \cos x - 2) (2 \cos x + 1) = 0$ So cos $x = +\frac{2}{3}$ or cos $x = -\frac{1}{2}$ Solutions of cos $x = +\frac{2}{3} \operatorname{are} \cos^{-1} \left(\frac{2}{3}\right), 2\pi - \cos^{-1} \left(\frac{2}{3}\right) = 0.841, 5.44$ Solutions of $\cos x = -\frac{1}{2} \operatorname{are} \cos^{-1} \left(-\frac{1}{2} \right), 2\pi - \cos^{-1} \left(-\frac{1}{2} \right) = \frac{2\pi}{3}, \frac{4\pi}{3}$ Solutions are 0.841, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, 5.44 (f) $\cos^2 x - 6 \sin x = 5$ $\Rightarrow (1 - \sin^2 x) - 6 \sin x = 5$ $\Rightarrow \sin^2 x + 6 \sin x + 4 = 0$ So sin $x = \frac{-6 \pm \sqrt{20}}{2} \left(= -3 \pm \sqrt{5} \right)$ As $\frac{-6-\sqrt{20}}{2} < -1$, there are no solutions of sin $x = \frac{-6-\sqrt{20}}{2}$ Consider solutions of sin $x = \frac{-6 + \sqrt{20}}{2}$ S А 0.8690.869 $\sin^{-1}\left(\begin{array}{c} \frac{-6+\sqrt{20}}{2} \end{array}\right) = -0.869$ (not in given interval) Solutions are $\pi + 0.869$, $2\pi - 0.869 = 4.01$, 5.41 (g) $2 \sin^2 x - 3 \sin x \cos x - 2 \cos^2 x = 0$ $\Rightarrow (2 \sin x + \cos x) (\sin x - 2 \cos x) = 0$ $\Rightarrow 2 \sin x + \cos x = 0 \text{ or } \sin x - 2 \cos x = 0$ So $\tan x = -\frac{1}{2}$ or $\tan x = 2$ Consider solutions of tan $x = -\frac{1}{2}$ First solution is $\tan^{-1} \left(-\frac{1}{2} \right) = -0.4636$... (not in interval)



Solutions are $\pi - 0.4636$, $2\pi - 0.4636 = 2.68$, 5.82 Solutions of tan x = 2 are tan⁻¹ 2, $\pi + \tan^{-1}$ 2 = 1.11, 4.25 Solution set: x = 1.11, 2.68, 4.25, 5.82 (3 s.f.)

Trigonometrical identities and simple equations Exercise E, Question 1

Question:

Given that angle A is obtuse and $\cos A = -\sqrt{\frac{7}{11}}$, show that $\tan A = \frac{-2\sqrt{7}}{7}$.

Solution:

Using sin² $A + \cos^2 A \equiv 1$ sin² $A + \left(-\sqrt{\frac{7}{11}} \right)^2 = 1$ sin² $A = 1 - \frac{7}{11} = \frac{4}{11}$ sin $A = \pm \frac{2}{\sqrt{11}}$ But A is in the second quadrant (obtuse), so sin A is + ve. So sin $A = + \frac{2}{\sqrt{11}}$ Using tan $A = \frac{\sin A}{\cos A}$ tan $A = \frac{\left(\frac{2}{\sqrt{11}}\right)}{-\sqrt{\frac{7}{11}}} = -\frac{2}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{7}} = -\frac{2}{\sqrt{7}} = -\frac{2\sqrt{7}}{7}$ (rationalising the denominator)

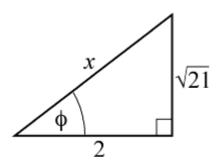
Trigonometrical identities and simple equations Exercise E, Question 2

Question:

Given that angle B is reflex and tan $B = + \frac{\sqrt{21}}{2}$, find the exact value of: (a) sin B, (b) cos B.

Solution:

Draw a right-angled triangle with an angle ϕ where $\tan \phi = + \frac{\sqrt{21}}{2}$.



Using Pythagoras' Theorem to find the hypotenuse: $x^2 = 2^2 + (\sqrt{21})^2 = 4 + 21 = 25$ So x = 5

(a) sin $\phi = \frac{\sqrt{21}}{5}$

As *B* is reflex and tan *B* is + ve, *B* is in the third quadrant. So sin $B = -\sin \phi = -\frac{\sqrt{21}}{5}$

(b) From the diagram $\cos \phi = \frac{2}{5}$

B is in the third quadrant, so cos $B = -\cos \phi = -\frac{2}{5}$

Trigonometrical identities and simple equations Exercise E, Question 3

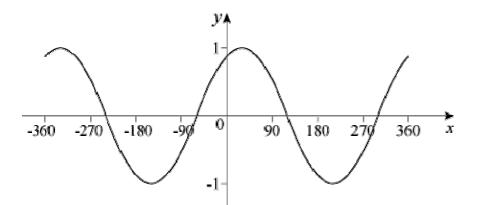
Question:

(a) Sketch the graph of $y = \sin (x + 60)^{\circ}$, in the interval $-360 \le x \le 360$, giving the coordinates of points of intersection with the axes.

(b) Calculate the values of the x-coordinates of the points in which the line $y = \frac{1}{2}$ intersects the curve.

Solution:

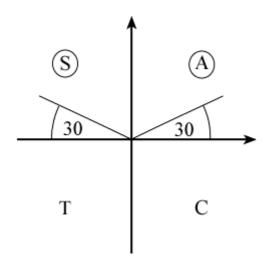
(a) The graph of $y = \sin (x + 60)^{\circ}$ is the graph of $y = \sin x^{\circ}$ translated by 60 to the left.



The curve meets the *x*-axis at (-240, 0), (-60, 0), (120, 0) and (300, 0)The curve meets the *y*-axis, where x = 0. So $y = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$ Coordinates are $\left(0, \frac{\sqrt{3}}{2}\right)$

(b) The line meets the curve where sin $\begin{pmatrix} x + 60 \end{pmatrix} \circ = \frac{1}{2}$ Let (x + 60) = X and solve sin $X \circ = \frac{1}{2}$ where $-300 \le X \le 420$ sin $X \circ = \frac{1}{2}$

First solution is X = 30 (your calculator solution) As sin X is + ve, X is in the 1st and 2nd quadrants.



Read off all solutions in the interval $-300 \le X \le 420$ X = -210, 30, 150, 390 x + 60 = -210, 30, 150, 390So x = -270, -30, 90, 330

Trigonometrical identities and simple equations Exercise E, Question 4

Question:

Simplify the following expressions:

(a) $\cos^4 \theta - \sin^4 \theta$

(b) $\sin^2 3\theta - \sin^2 3\theta \cos^2 3\theta$

(c) $\cos^4 \theta + 2 \sin^2 \theta \cos^2 \theta + \sin^4 \theta$

Solution:

(a) Factorise $\cos^4 \theta - \sin^4 \theta$ (difference of two squares) $\cos^4 \theta - \sin^4 \theta = (\cos^2 \theta + \sin^2 \theta) (\cos^2 \theta - \sin^2 \theta) = (1) (\cos^2 \theta - \sin^2 \theta) (as \sin^2 \theta + \cos^2 \theta \equiv 1)$ So $\cos^4 \theta - \sin^4 \theta = \cos^2 \theta - \sin^2 \theta$

(b) Factorise $\sin^2 3\theta - \sin^2 3\theta \cos^2 3\theta$ $\sin^2 3\theta - \sin^2 3\theta \cos^2 3\theta$ $= \sin^2 3\theta (1 - \cos^2 3\theta)$ use $\sin^2 3\theta + \cos^2 3\theta \equiv 1$ $= \sin^2 3\theta (\sin^2 3\theta)$ $= \sin^4 3\theta$

(c) $\cos^4 \theta + 2 \sin^2 \theta \cos^2 \theta + \sin^4 \theta = (\cos^2 \theta + \sin^2 \theta)^2 = 1$ since $\sin^2 \theta + \cos^2 \theta \equiv 1$

Trigonometrical identities and simple equations Exercise E, Question 5

Question:

(a) Given that 2 ($\sin x + 2 \cos x$) = $\sin x + 5 \cos x$, find the exact value of $\tan x$.

(b) Given that $\sin x \cos y + 3 \cos x \sin y = 2 \sin x \sin y - 4 \cos x \cos y$, express $\tan y$ in terms of $\tan x$.

Solution:

(a) 2 ($\sin x + 2 \cos x$) = $\sin x + 5 \cos x$ \Rightarrow 2 sin x + 4 cos x = sin x + 5 cos x \Rightarrow 2 sin x - sin x = 5 cos x - 4 cos x \Rightarrow sin $x = \cos x$ divide both sides by $\cos x$ So $\tan x = 1$ (b) $\sin x \cos y + 3 \cos x \sin y = 2 \sin x \sin y - 4 \cos x \cos y$ $\frac{\sin x \cos y}{\cos y} + \frac{3 \cos x \sin y}{\cos x} = \frac{2 \sin x \sin y}{\sin y} - \frac{4 \cos x \cos y}{\cos y}$ ⇒ COS X COS Y $\cos x \cos y$ $\cos x \cos v$ COSX COSY \Rightarrow tan x + 3 tan y = 2 tan x tan y - 4 \Rightarrow 2 tan x tan y - 3 tan y = 4 + tan x \Rightarrow tan y (2 tan x - 3) = 4 + tan x $4 + \tan x$ So $\tan y = \frac{1}{2 \tan x - 3}$

Trigonometrical identities and simple equations Exercise E, Question 6

Question:

Show that, for all values of θ :

(a) $(1 + \sin \theta)^2 + \cos^2 \theta = 2(1 + \sin \theta)$

(b) $\cos^4 \theta + \sin^2 \theta = \sin^4 \theta + \cos^2 \theta$

Solution:

```
(a) LHS = (1 + 2 \sin \theta + \sin^2 \theta) + \cos^2 \theta
= 1 + 2 sin \theta + 1 since sin<sup>2</sup> \theta + cos<sup>2</sup> \theta = 1
= 2 + 2 sin \theta
= 2 (1 + sin \theta)
= RHS
```

```
(b) LHS = \cos^4 \theta + \sin^2 \theta

= (\cos^2 \theta)^2 + \sin^2 \theta

= (1 - \sin^2 \theta)^2 + \sin^2 \theta since \sin^2 \theta + \cos^2 \theta \equiv 1

= 1 - 2 \sin^2 \theta + \sin^4 \theta + \sin^2 \theta

= (1 - \sin^2 \theta) + \sin^4 \theta

= \cos^2 \theta + \sin^4 \theta using \sin^2 \theta + \cos^2 \theta \equiv 1

= RHS
```

Trigonometrical identities and simple equations Exercise E, Question 7

Question:

Without attempting to solve them, state how many solutions the following equations have in the interval $0 \le \theta \le 360^\circ$. Give a brief reason for your answer.

(a) 2 sin $\theta = 3$

(b) $\sin \theta = -\cos \theta$

(c) 2 sin θ + 3 cos θ + 6 = 0

(d) $\tan \theta + \frac{1}{\tan \theta} = 0$

Solution:

(a)
$$\sin \theta = \frac{3}{2}$$
 has no solutions as $-1 \le \sin \theta \le 1$

(b) $\sin \theta = -\cos \theta$

 $\Rightarrow \quad \tan \theta = -1$ Look at graph of $y = \tan \theta$ in the interval $0 \le \theta \le 360^\circ$. There are 2 solutions

(c) The minimum value of $2 \sin \theta$ is -2The minimum value of $3 \cos \theta$ is -3Each minimum value is for a different θ . So the minimum value of $2 \sin \theta + 3 \cos \theta > -5$. There are no solutions of $2 \sin \theta + 3 \cos \theta + 6 = 0$ as the LHS can never be zero.

(d) Solving $\tan \theta + \frac{1}{\tan \theta} = 0$ is equivalent to solving $\tan^2 \theta = -1$, which has no real solutions, so there are no solutions.

Trigonometrical identities and simple equations Exercise E, Question 8

Question:

(a) Factorise $4xy - y^2 + 4x - y$.

(b) Solve the equation 4 sin $\theta \cos \theta - \cos^2 \theta + 4 \sin \theta - \cos \theta = 0$, in the interval $0 \leq \theta \leq 360^{\circ}$.

Solution:

(a) $4xy - y^2 + 4x - y \equiv y(4x - y) + (4x - y) = (4x - y)(y + 1)$

(b) Using (a) with $x = \sin \theta$, $y = \cos \theta$ $4 \sin \theta \cos \theta - \cos^2 \theta + 4 \sin \theta - \cos \theta = 0$ $\Rightarrow (4 \sin \theta - \cos \theta) (\cos \theta + 1) = 0$ So $4 \sin \theta - \cos \theta = 0$ or $\cos \theta + 1 = 0$ $4 \sin \theta - \cos \theta = 0 \Rightarrow \tan \theta = \frac{1}{4}$ Calculator solution is $\theta = 14.0^{\circ}$

tan θ is +ve so θ is in the 1st and 3rd quadrants So $\theta = 14.0^{\circ}$, 194° $\cos \theta + 1 = 0 \Rightarrow \cos \theta = -1$ So $\theta = +180^{\circ}$ (from graph) Solutions are $\theta = 14.0^{\circ}$, 180°, 194°

Trigonometrical identities and simple equations Exercise E, Question 9

Question:

(a) Express 4 cos $3\theta^{\circ}$ – sin (90 – 3θ) $^{\circ}$ as a single trigonometric function.

(b) Hence solve 4 cos $3\theta^{\circ}$ – sin (90 – 3θ) $^{\circ}$ = 2 in the interval 0 $\leq \theta \leq 360$. Give your answers to 3 significant figures.

Solution:

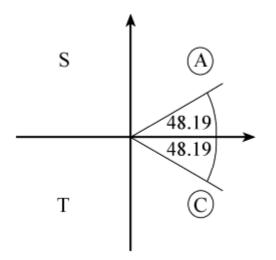
(a) As sin $(90 - \theta)^{\circ} \equiv \cos \theta^{\circ}$, sin $(90 - 3\theta)^{\circ} \equiv \cos 3\theta^{\circ}$ So $4 \cos 3\theta^{\circ} - \sin (90 - 3\theta)^{\circ} = 4 \cos 3\theta^{\circ} - \cos 3\theta^{\circ} = 3 \cos 3\theta^{\circ}$

(b) Using (a) 4 cos $3\theta^{\circ}$ - sin (90 - $3\theta^{\circ}$) $^{\circ} = 2$ is equivalent to 3 cos $3\theta^{\circ} = 2$

so cos $3\theta^{\circ} = \frac{2}{3}$

Let $X = 3\theta$ and solve $\cos X^{\circ} = \frac{2}{3}$ in the interval $0 \le X \le 1080$

The calculator solution is X = 48.19As cos X° is +ve, X is in the 1st and 4th quadrant.



Read off all solutions in the interval $0 \le X \le 1080$ X = 48.19, 311.81, 408.19, 671.81, 768.19, 1031.81 So $\theta = \frac{1}{3}X = 16.1$, 104, 136, 224, 256, 344 (3 s.f.)

Trigonometrical identities and simple equations Exercise E, Question 10

Question:

Find, in radians to two decimal places, the value of x in the interval $0 \le x \le 2\pi$, for which $3 \sin^2 x + \sin x - 2 = 0$. **[E]**

Solution:

3 sin² x + sin x - 2 = 0 (3 sin x - 2) (sin x + 1) = 0 factorising So sin x = $\frac{2}{3}$ or sin x = -1 For sin x = $\frac{2}{3}$ your calculator answer is 0.73 (2 d.p.) As sin x is +ve, x is in the 1st and 2nd quadrants. So second solution is (π - 0.73) = 2.41 (2 d.p.) For sin x = -1, x = $\frac{3\pi}{2}$ = 4.71 (2 d.p.)

So x = 0.73, 2.41, 4.71

Trigonometrical identities and simple equations Exercise E, Question 11

Question:

Given that 2 sin $2\theta = \cos 2\theta$:

(a) Show that $\tan 2 \theta = 0.5$.

(b) Hence find the value of θ , to one decimal place, in the interval $0 \leq \theta < 360^{\circ}$ for which $2 \sin 2\theta^{\circ} = \cos 2\theta^{\circ}$. **[E]**

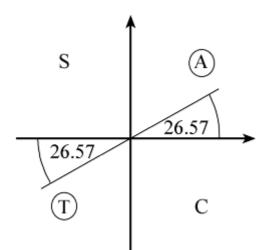
Solution:

(a)
$$2 \sin 2\theta = \cos 2\theta$$

 $\Rightarrow \frac{2 \sin 2\theta}{\cos 2\theta} = 1$
 $\Rightarrow 2 \tan 2\theta = 1 \tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta}$

So tan $2\theta = 0.5$

(b) Solve tan $2\theta^{\circ} = 0.5$ in the interval $0 \leq \theta < 360$ or tan $X^{\circ} = 0.5$ where $X = 2\theta, 0 \leq X < 720$ The calculator solution for tan $^{-1} 0.5 = 26.57$ As tan X is +ve, X is in the 1st and 3rd quadrants.



Read off solutions for X in the interval $0 \le X < 720$ X = 26.57, 206.57, 386.57, 566.57 $X = 2\theta$ So $\theta = \frac{1}{2}X = 13.3, 103.3, 193.3, 283.3 (1 d.p.)$

Trigonometrical identities and simple equations Exercise E, Question 12

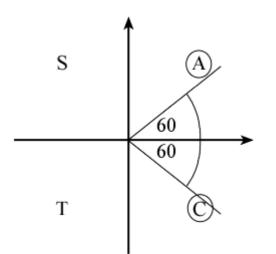
Question:

Find all the values of θ in the interval $0 \leq \theta < 360$ for which: (a) cos ($\theta + 75$) ° = 0.5.

(b) sin $2\theta^{\circ} = 0.7$, giving your answers to one decimal place. **[E]**

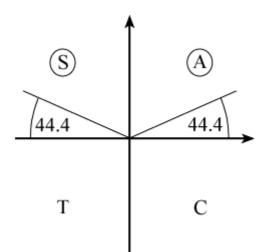
Solution:

(a) cos $(\theta + 75)^{\circ} = 0.5$ Solve cos $X^{\circ} = 0.5$ where $X = \theta + 75, 75 \leq X < 435$ Your calculator solution for X is 60 As cos X is +ve, X is in the 1st and 4th quadrants.



Read off all solutions in the interval 75 $\leq X < 435$ X = 300, 420 θ + 75 = 300, 420 So θ = 225, 345

(b) $\sin 2\theta \circ = 0.7$ in the interval $0 \le \theta < 360$ Solve $\sin X \circ = 0.7$ where $X = 2\theta$, $0 \le X < 720$ Your calculator solution is 44.4 As $\sin X$ is +ve, X is in the 1st and 2nd quadrants.



Read off solutions in the interval $0 \le X < 720$ X = 44.4, 135.6, 404.4, 495.6 $X = 2\theta$ So $\theta = \frac{1}{2}X = 22.2, 67.8, 202.2, 247.8 (1 d.p.)$

Trigonometrical identities and simple equations Exercise E, Question 13

Question:

(a) Find the coordinates of the point where the graph of $y = 2 \sin \left(2x + \frac{5}{6}\pi \right)$ crosses the y-axis.

(b) Find the values of x, where $0 \le x \le 2\pi$, for which $y = \sqrt{2}$. [E]

Solution:

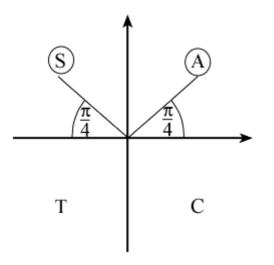
(a) $y = 2 \sin \left(2x + \frac{5}{6}\pi \right)$ crosses the y-axis where x = 0So $y = 2 \sin \frac{5}{6}\pi = 2 \times \frac{1}{2} = 1$

Coordinates are (0, 1)

(b) Solve 2 sin
$$\left(2x + \frac{5}{6}\pi\right) = \sqrt{2}$$
 in the interval $0 \le x \le 2\pi$
So sin $\left(2x + \frac{5}{6}\pi\right) = \frac{\sqrt{2}}{2}$
or sin $X = \frac{\sqrt{2}}{2}$ where $\frac{5}{6}\pi \le X \le 4\frac{5}{6}\pi$

Your calculator solution is $\frac{\pi}{4}$

As sin X is +ve, X lies in the 1st and 2nd quadrants.



Read off solutions for X in the interval $\frac{5}{6}\pi \leq X \leq 4\frac{5}{6}\pi$ (Note: first value of X in interval is on second revolution.) $X = \frac{9\pi}{4}, \frac{11\pi}{4}, \frac{17\pi}{4}, \frac{19\pi}{4}$

$$2x + \frac{5}{6}\pi = \frac{9\pi}{4}, \frac{11\pi}{4}, \frac{17\pi}{4}, \frac{19\pi}{4}$$

$$2x = \frac{9\pi}{4} - \frac{5\pi}{6}, \frac{11\pi}{4} - \frac{5\pi}{6}, \frac{17\pi}{4} - \frac{5\pi}{6}, \frac{19\pi}{4} - \frac{5\pi}{6}$$

$$2x = \frac{17\pi}{12}, \frac{23\pi}{12}, \frac{41\pi}{12}, \frac{47\pi}{12}$$
So $x = \frac{17\pi}{24}, \frac{23\pi}{24}, \frac{41\pi}{24}, \frac{47\pi}{24}$

Trigonometrical identities and simple equations Exercise E, Question 14

Question:

Find, giving your answers in terms of π , all values of θ in the interval $0 < \theta < 2\pi$, for which:

(a) $\tan \left(\theta + \frac{\pi}{3} \right) = 1$

(b) sin $2\theta = -\frac{\sqrt{3}}{2}$ [E]

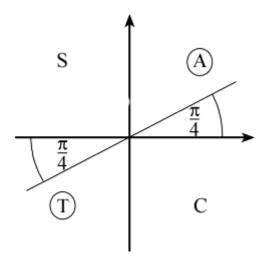
Solution:

(a)
$$\tan \left(\theta + \frac{\pi}{3} \right) = 1$$
 in the interval $0 < \theta < 2\pi$
 π 7π

Solve tan X = 1 where $\frac{\pi}{3} < X < \frac{\pi}{3}$

Calculator solution is $\frac{\pi}{4}$

As tan X is +ve, X is in the 1st and 3rd quadrants.



Read off solutions for X in the interval $\frac{\pi}{3} < X < \frac{7\pi}{3}$

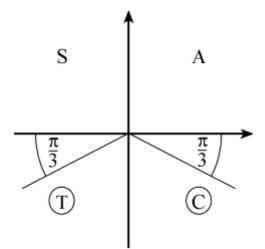
$$X = \frac{5\pi}{4}, \frac{9\pi}{4}$$

$$\theta + \frac{\pi}{3} = \frac{5\pi}{4}, \frac{9\pi}{4}$$

So $\theta = \frac{5\pi}{4} - \frac{\pi}{3}, \frac{9\pi}{4} - \frac{\pi}{3} = \frac{11\pi}{12}, \frac{23\pi}{12}$
(b) Solve sin $X = \frac{-\sqrt{3}}{2}$ where $X = 2\theta, 0 < \theta < 4\pi$

Calculator answer is $-\frac{\pi}{3}$

As sin X is - ve, X is in the 3rd and 4th quadrants.



Read off solutions for *X* in the interval $0 < \theta < 4\pi$

$$X = \frac{4\pi}{3}, \frac{5\pi}{3}, \frac{10\pi}{3}, \frac{11\pi}{3}$$

So $\theta = \frac{1}{2}X = \frac{2\pi}{3}, \frac{5\pi}{6}, \frac{5\pi}{3}, \frac{11\pi}{6}$

Trigonometrical identities and simple equations Exercise E, Question 15

Question:

Find the values of x in the interval $0 < x < 270^{\circ}$ which satisfy the equation $\frac{\cos 2x + 0.5}{1 - \cos 2x} = 2$

Solution:

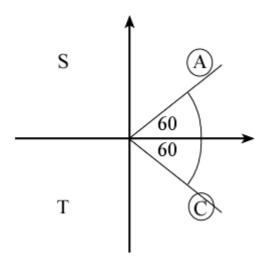
Multiply both sides of equation by $(1 - \cos 2x)$ (providing $\cos 2x \neq 1$) (**Note**: In the interval given $\cos 2x$ is never equal to 1.) So $\cos 2x + 0.5 = 2 - 2 \cos 2x$

$$\Rightarrow$$
 3 cos 2x = $\frac{3}{2}$

So cos $2x = \frac{1}{2}$

Solve cos $X = \frac{1}{2}$ where X = 2x, 0 < X < 540

Calculator solution is 60° As cos *X* is +ve, *X* is in 1st and 4th quadrants.



Read off solutions for X in the interval 0 < X < 540 $X = 60^{\circ}$, 300° , 420°

So
$$x = \frac{1}{2}X = 30^{\circ}, 150^{\circ}, 210^{\circ}$$

Trigonometrical identities and simple equations Exercise E, Question 16

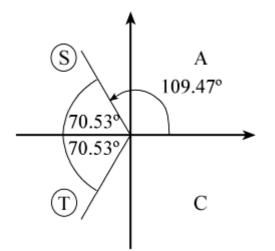
Question:

Find, to the nearest integer, the values of x in the interval $0 \le x < 180^{\circ}$ for which $3 \sin^2 3x - 7 \cos 3x - 5 = 0$.

[E]

Solution:

Using $\sin^2 3x + \cos^2 3x \equiv 1$ $3(1 - \cos^2 3x) - 7 \cos 3x - 5 = 0$ $\Rightarrow 3 \cos^2 3x + 7 \cos 3x + 2 = 0$ $\Rightarrow (3 \cos 3x + 1) (\cos 3x + 2) = 0$ factorising So $3 \cos 3x + 1 = 0$ or $\cos 3x + 2 = 0$ As $\cos 3x = -2$ has no solutions, the only solutions are from $3 \cos 3x + 1 = 0$ or $\cos 3x = -\frac{1}{3}$ Let X = 3xSolve $\cos X = -\frac{1}{3}$ in the interval $0 \leq X < 540^{\circ}$ The calculator solution is $X = 109.47^{\circ}$ As $\cos X$ is -ve, X is in the 2nd and 3rd quadrants.



Read off values of X in the interval $0 \le X < 540^{\circ}$ $X = 109.47^{\circ}, 250.53^{\circ}, 469.47^{\circ}$ So $x = \frac{1}{3}X = 36.49^{\circ}, 83.51^{\circ}, 156.49^{\circ} = 36^{\circ}, 84^{\circ}, 156^{\circ}$ (to the nearest integer)

Trigonometrical identities and simple equations Exercise E, Question 17

Question:

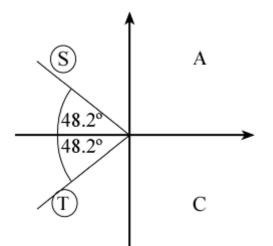
Find, in degrees, the values of θ in the interval $0 \le \theta < 360^\circ$ for which $2 \cos^2 \theta - \cos \theta - 1 = \sin^2 \theta$ Give your answers to 1 decimal place, where appropriate.

[E]

Solution:

Using $\sin^2 \theta + \cos^2 \theta \equiv 1$ $2 \cos^2 \theta - \cos \theta - 1 = 1 - \cos^2 \theta$ $\Rightarrow 3 \cos^2 \theta - \cos \theta - 2 = 0$ $\Rightarrow (3 \cos \theta + 2) (\cos \theta - 1) = 0$ So $3 \cos \theta + 2 = 0$ or $\cos \theta - 1 = 0$ For $3 \cos \theta + 2 = 0$, $\cos \theta = -\frac{2}{3}$

Calculator solution is 131.8° As $\cos \theta$ is -ve, θ is in the 2nd and 3rd quadrants.



 $\theta = 131.8^{\circ}, 228.2^{\circ}$ For cos $\theta = 1, \theta = 0^{\circ}$ (see graph and note that 360° is not in given interval) So solutions are $\theta = 0^{\circ}, 131.8^{\circ}, 228.2^{\circ}$

Trigonometrical identities and simple equations Exercise E, Question 18

Question:

Consider the function f(x) defined by $f(x) \equiv 3 + 2 \sin (2x + k) \circ , 0 < x < 360$ where *k* is a constant and 0 < k < 360. The curve with equation y = f(x) passes through the point with coordinates (15, $3 + \sqrt{3}$).

(a) Show that k = 30 is a possible value for k and find the other possible value of k.

(b) Given that k = 30, solve the equation f (x) = 1.

[E]

Solution:

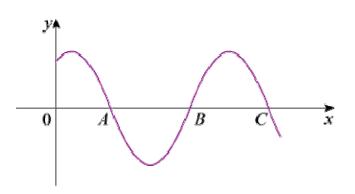
(a) $(15, 3 + \sqrt{3})$ lies on the curve $y = 3 + 2 \sin (2x + k)$ ° So $3 + \sqrt{3} = 3 + 2 \sin (30 + k)$ ° $2 \sin (30 + k)$ ° $= \sqrt{3}$ sin $\left(30 + k\right)$ ° $= \frac{\sqrt{3}}{2}$ A solution, from your calculator, is 60° So 30 + k = 60 is a possible result $\Rightarrow k = 30$ As given by the second result of the lateral 2nd surdress

As sin (30 + k) is +ve, answers lie in the 1st and 2nd quadrant. The other angle is 120° , so 30 + k = 120 $\Rightarrow k = 90$ (b) For k = 30, f (x) = 1 is $3 + 2 \sin (2x + 30)^{\circ} = 1$ $2 \sin (2x + 30)^{\circ} = -2$ sin $(2x + 30)^{\circ} = -1$ Let X = 2x + 30Solve sin $X^{\circ} = -1$ in the interval 30 < X < 750From the graph of $y = \sin X^{\circ}$ X = +270, 630 2x + 30 = 270, 630 2x = 240, 600So x = 120, 300

Trigonometrical identities and simple equations Exercise E, Question 19

Question:

(a) Determine the solutions of the equation $\cos (2x - 30)^\circ = 0$ for which $0 \le x \le 360$.



(b) The diagram shows part of the curve with equation $y = \cos (px - q)^{\circ}$, where *p* and *q* are positive constants and q < 180. The curve cuts the *x*-axis at points *A*, *B* and *C*, as shown. Given that the coordinates of *A* and *B* are (100, 0) and (220, 0) respectively:

(i) Write down the coordinates of *C*.(ii) Find the value of *p* and the value of *q*.

[E]

Solution:

(a) The graph of $y = \cos x^{\circ}$ crosses x-axis (y = 0) where $x = 90, 270, \dots$ Let X = 2x - 30Solve $\cos X^{\circ} = 0$ in the interval $-30 \le X \le 690$ X = 90, 270, 450, 6302x - 30 = 90, 270, 450, 6302x = 120, 300, 480, 660So x = 60, 150, 240, 330

(b) (i) As AB = BC, C has coordinates (340, 0) (ii) When x = 100, cos (100p - q) $^{\circ} = 0$, so 100p - q = 90When x = 220, 220p - q = 270When x = 340, 340p - q = 450

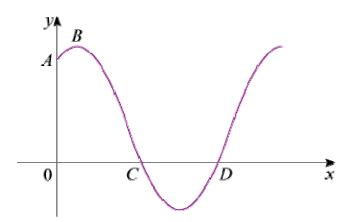
Solving the simultaneous equations $\bigcirc -\bigcirc: 120p = 180 \implies p = \frac{3}{2}$

Substitute in $\textcircled{0}: 150 - q = 90 \Rightarrow q = 60$

Trigonometrical identities and simple equations Exercise E, Question 20

Question:

The diagram shows part of the curve with equation y = f(x), where $f(x) = 1 + 2 \sin(px^\circ + q^\circ)$, p and q being positive constants and $q \leq 90$. The curve cuts the y-axis at the point A and the x-axis at the points C and D. The point B is a maximum point on the curve.



Given that the coordinates of *A* and *C* are (0, 2) and (45, 0) respectively:

(a) Calculate the value of q.

(b) Show that p = 4.

(c) Find the coordinates of B and D.

[E]

Solution:

(a) Substitute (0, 2) is y = f(x): $2 = 1 + 2 \sin q^{\circ}$ $2 \sin q^{\circ} = +1$ $\sin q^{\circ} = + \frac{1}{2}$ As $q \leq 90, q = 30$ (b) C is where $1 + 2 \sin (px^{\circ} + q^{\circ}) = 0$ for the first time. $\left(px^{\circ} + 30^{\circ} \right) = -\frac{1}{2}$ (use only first solution) Solve sin $45p^{\circ} + 30^{\circ} = 210^{\circ}$ (*x* = 45 at *C*) 45p = 180p = 4(c) At B = f(x) is a maximum. $1 + 2 \sin (4x^\circ + 30^\circ)$ is a maximum when sin $(4x^\circ + 30^\circ) = 1$ So y value at B = 1 + 2 = 3For x value, solve $4x^{\circ} + 30^{\circ} = 90^{\circ}$ (as B is first maximum) *x* = 15 ⇒

Coordinates of *B* are (15, 3).

D is the second x value for which $1 + 2 \sin (4x^{\circ} + 30^{\circ}) = 0$

Solve sin
$$\begin{pmatrix} 4x \circ + 30 \circ \\ 4x \circ + 30 \circ \end{pmatrix} = -\frac{1}{2}$$
 (use second solution)
 $4x \circ + 30 \circ = 330 \circ$
 $4x \circ = 300 \circ$
 $x = 75$
Coordinates of *D* are (75, 0).